

ISSN: 2456-2912
NAAS Rating (2026): 4.61
VET 2025; SP-11(1): 117-119
© 2026 VET
www.veterinarpaper.com
Received: 13-11-2025
Accepted: 24-12-2025

PI Ganesan
Professor & Head, Department of Veterinary Public Health & Epidemiology, Centurion University of Technology and Management, Paralakhemundi, Odisha, India

Sushree Sangita
UG Scholar, School of Veterinary & Animal Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, India

Gauri Rao Kontham
UG Scholar, School of Veterinary & Animal Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, India

Barnali Sahoo
Microbiologist, School of Veterinary & Animal Sciences, Centurion University of Technology and Management, Paralakhemundi, Odisha, India

Corresponding Author:
PI Ganesan
Professor & Head, Department of Veterinary Public Health & Epidemiology, Centurion University of Technology and Management, Paralakhemundi, Odisha, India

Studies on the prevalence of fungi in enteric and pneumonic cases of sheep population in Gajapati District, Odisha state

PI Ganesan, Sushree Sangita, Gauri Rao Kontham and Barnali Sahoo

DOI: <https://www.doi.org/10.22271/veterinary.2026.v11.i1Sb.2950>

Abstract

The present study was carried out in sheep population in an organized livestock farm having cattle buffaloes, sheep, goats and swine population in R. Sitapur village, Gajapati district of Odisha state for the prevalence of fungi affected with pneumonic and enteric symptoms. The clinical signs observed in this sheep populations were pneumonia and enteritis. The sabouraud dextrose agar culture of the nasal and enteric samples collected from the infected sheep population followed by staining with lactophenol cotton blue revealed the prevalence of *Microsporum* Sp, *Alternaria alternata*, *Candida albicans* and *Mucor* Sp. Factors associated for the causation of multiple fungal infections in this sheep population were the warmth climatic conditions, humidity, infected floor, poor sanitation of the sheep shed and absence of regular monitoring of the animals for fungal infections.

Keywords: Fungi, prevalence, pneumonic, enteric, sheep

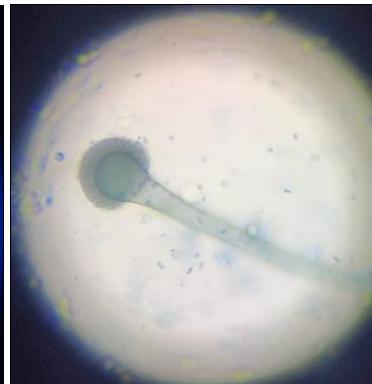
Introduction

Fungal infections are common contagious diseases caused by fungi. Some species live in the environment and act as parasites rarely. In live animals the dermatophytes are inhabitant of the superficial tissues like hair, nails, subcutaneous tissues and other sites and are reported more in immune compromised animals. Dermatophytosis caused mostly by three genera, namely *Trichophyton*, *Microsporum* and *Epidermophyton*. Most fungi are available in the soil and in living tissues. (Spickler *et al.* 2013) [22]. Fungal infections are more relatively in healthy and immune competent animals because of their presence in the environment. (Kohler *et al.* 2015; Gnat *et al.* (2020) [15, 13]. The prevalence of fungal dermatophytosis are low and recurrent infections caused by true and opportunistic pathogens in animals and human beings. Ringworm infections of animals and human beings are more in animals and human beings in hot and humid climates. (Radostits *et al.* 2000) [17]. The prevalence of goat and sheep dermatophytes were 8.9 and 7.0 % in Nigeria respectively (Nweze 2011) [16], and it was 6.4 and 6.1% in West Bengal respectively (Biswas *et al.* 2015). The prevalence of *Trichophyton mentagrophytes* and *Trichophyton verrucosum* were 25.5 and 23.8% respectively in goat and sheep population in Nigeria (Dalis *et al.* 2023) [7]. Emenuga and Oyeka (2013) [8] reported 19.64% *T. verrucosum*, 20.54% of *T. mentagrophytes* 5.8% *M. gypseum* in sheep and goat in Nigeria. CFSPH (2004-2013) reported the prevalence of *M. audouinii*, *T. rubrum*, *T. tonsurans* and *E. floccosum* in all livestock species including goats and pets. Studies on the prevalence of fungal infections in various animals both systemic and cutaneous origins were carried out extensively by many authors. In this study an attempt was made to study the prevailing fungal infections in sheep population affected with enteritis and pneumonia in an organized livestock farm complex.

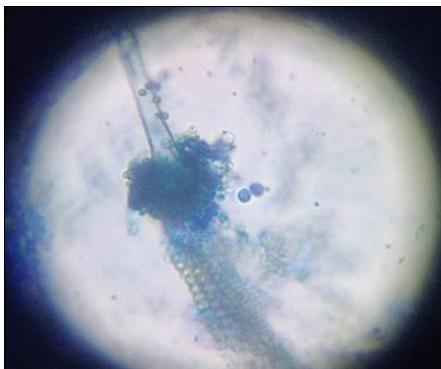
Materials and Methods

Location: The present study was carried out in an organized livestock farm in Sitapur village in Gajapati district of Odisha state.

Clinical examination of the animals


A total number of 22 sheep, out of 42, showed the clinical signs for enteritis and pneumonia and these animals were screened for these fungi prevalence. All these animals were kept in semi-intensive system of rearing and vaccinated for foot and mouth disease, hemorrhagic septicemia, black quarter and dewormed regularly.

Combined fungi-SDA-Culture


Microsporum Sp

Candida albicans

Alternaria alternata

Mucor Sp

The SDA culture and LPCB staining of the infected samples from the affected sheep population with enteritis and pneumonia revealed the presence of *Microsporum* Sp, *Alternaria alternata*, *Candida albicans* and *Mucor* Sp.

Discussion

In this study *Microsporum* Sp, *Alternaria alternata*, *Candida albicans* and *Mucor* Sp were identified in the enteric and pneumonic cases of sheep in Sitapur village of Gajapati district in Odisha state where the hot and cold climates prevails throughout the year. Emenuga and Oyeka (2013) [8] isolated *T. verrucosum*, *T. mentagrophytes*, *M. gypseum*, *Sporothrix schenckii*, *Candida albicans*, *Fusarium solani*, *Geotrichum candidum* and *Aspergillus* species in sheep and goats. Scott *et al.* (2001) [19] reported the prevalence of *Trichophyton* Sp, *Microsporum* Sp and *Epidermophyton* Sp. in animal hosts for extended periods. Santos and Marin 2005; Costa *et al.* (1993) [6] reported yeasts and fungi as opportunistic organisms under weak defence mechanism of the dairy cattle with mastitis. Jensen *et al.* (1994) [14] reported the respiratory and systemic invasion of the fungi to cause enteritis, endometritis and encephalitis in cattle and horse. Slaviero *et al.* (2020) [21] suggested mucorales as saprophytic opportunistic organisms. Ganesan and Anamika Meena (2024) [11] reported the prevalence of *M. gypseum*, *M. nanum*, *T. tonsurans* and *Exserohilum rostratum* in goat populations of Rajasthan state. Sharma *et al.* (2010) [20] reported

Laboratory examination for fungal infections

Nasal and enteric samples were collected from the clinically positive sheep and subjected for sabouraud dextrose agar media (SDA) culture followed by lacto phenol cotton blue staining (LPCB).

Results

Microsporum gypseum, *Trichophyton mentagrophytes* and *Mucor* Sp as a contaminants in cattle population in Rajasthan state. Ajello and Chermette *et al.* (1962) [2] reported the carrier status of the fungal organisms in the living animals. Sravani and Ganesan (2024) [9] reported the prevalence of *Microsporum* and *Mucor* species in buffaloe population of Rajasthan state. Ganesan *et al.* (2024) [10] reported the reservoir status of *M. audouinii*. *M. gypseum*, *M. nanum*, *T. tonsurans*, *E. rostratum* and *Alternaria alternata* in sheep population in Rajasthan state. Gawaz and Weisal (2018) [12] reported mixed infections of yeast like fungi, dermatophytes or moulds within the same lesions. Vippari (2014) [25] reported mixed infections of *Aspergillus flavus* with *Candida albicans* in an immuno compromised patient. Walsh 2004. Upton and Marr 2006 [24]; Almyroudis *et al.* (2006) [1] reported prevalence of *Aspergillus* Sp, *Alternaria alternata* and *Exserohilum rostratum* species as opportunistic pathogens with the clinical signs i.e cutaneous lesions, intestinal disorders, pulmonary and cerebral diseases. Ganesan *et al.* (2024) [11] reported the prevalence of *T. verrucosum*, *M. audouinii*, *M. gypseum*, *A. niger*, *E. rostratum* *P. brasiliensis* and *Alternaria alternata* in Sirohi and Beetal goat breeds of Rajasthan state. Baumgardner (2017) [3] reported the prevalence of fungal infections due to infected beddings, warm environmental temperature and humidity. The present study was carried out in sheep population in an organised livestock farm in R. Sitapur village in Gajapati district of

Odisha state, where the climatic conditions were in extreme status of hot and cold. This study revealed the existence of the *Microsporum* Sp, *Candida albicans*, *Mucor* Species and *Alternaria alternata* in sheep populations with enteric and pneumonic conditions. This study suggests the prevalence of *Microsporum* Sp, *Alternaria alternata*, *Candida albicans*, *Mucor* Sp as co opportunistic pathogens in the sheep populations due to contaminated premises.

Conclusions

Clinical examination of the affected population of the sheep with enteric and pneumonic problems revealed the prevalence of *Microsporum* Sp, *Candida albicans*, *Mucor* Species and *Alternaria alternata*. The attributed risk factors associated for the prevalence of the above fungal and yeast infections were due to the wet and dry conditions existing in the sheep unit through out the year. A detailed study on the prevalence of the pathogenic microbes needed in this sheep unit for successful management of the sheep population and to avoid the spillage of fungi to other healthy livestock of this farm and to rule out the co-pathogenic status of the studied fungi infections in the affected sheep population.

Conflict of Interest: Not available

Financial Support: Not available

Reference

1. Almyroudis N, Sutton D, Linden P, Rinaldi M, Fung J, Kusne S. Zygomycosis in solid organ transplant recipients in a tertiary transplant centre and review of the literature. *Am J Transplant.* 2006;6(10):2365-2375.
2. Ajello L. Present day concepts of the dermatophytes. *Mycopathologia.* 1962;17:315-324.
3. Baumgardner DJ. Fungal infections from human and animal contact. *J Patient Cent Res Rev.* 2017;4(2):78-79.
4. Biswas MK, Debnath C, Mitra T, Baidya S, Pradhan S. Studies on dermatophytes in sheep and goat in W. Bengal, India. *Indian J Anim Hlth.* 2015;54(2):109-114.
5. Center for Food Security and Public Health (CFSPPH). Dermatophytosis [Internet]. Ames: Iowa State University; 2004 [cited 2026 Jan 14]. Available from: www.cfsph.iastate.edu.
6. Costa E, Gandra C, Pires M, Coutinho S, Castilho W, Teixeira C. Survey of bovine mycotic mastitis in dairy herds in the state of Sao Paulo, Brazil. *Mycopathologia.* 1993;124(1):13-17.
7. Dalis JS, Kazeem HM, Chah KF. Occurrence of dermatophytosis among sheep and goats in Zaria, Nigeria. *Sokoto J Vet Sci.* 2023;21(2).
8. Emenuga VN, Oyeka CA. Epidemiology, health effects and treatment of cutaneous mycoses of goat and sheep from some eastern state of Nigeria. *Am J Infect Dis Microbiol.* 2013;1(6):106-110.
9. Ganesan PI, Singh VJ, Bhalla V. The prevalence of fungal and dermatophytes infection in caprine and its associated predisposing risk factors. *Int J Vet Anim Husb.* 2024;9(4):645-649.
10. Ganesan PI, Bhalla V, Singh VJ. Studies on the prevalence of dermatophytes and fungal infections in Patanwadi sheep. *Int J Vet Anim Husb.* 2024;9(5):290-293.
11. Ganesan PI, Meena A. A report on the prevalences of dermatophytes and fungus in normal caprine milk samples and its associated factors. *Int J Vet Sci Anim Husb.* 2024;9(5):715-718.
12. Gawaz A, Weisel G. Mixed infections are a critical factor in the treatment of superficial mycoses. *Mycoses.* 2018;61:731-735.
13. Gnat S, Lagowski D, Nowakiewicz A, Dylag M. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. *J Appl Microbiol.* 2020;131(5):2095-2113.
14. Jensen H, Olsen SN, Aalbaek B. Gastro-intestinal *Aspergillus* and *Zygomycosis* of cattle. *Vet Pathol.* 1994;31:28-36.
15. Kohler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. *Cold Spring Harb Perspect Med.* 2015;5(1).
16. Nweze EI. Dermatophytosis in domesticated animals. *Rev Inst Med Trop Sao Paulo.* 2011;55(2):95-99.
17. Radostits OM, Gay CC, Blood CD, Hinchcliff KW. Veterinary Medicine: A textbook of the diseases of cattle, sheep, pigs, goats and horses. 9th Ed. London: W.B. Saunders Company Ltd; 2000, p. 960.
18. Santos R, Marin M. Isolation of *Candida* sp. from mastitis milk in Brazil. *Mycopathologia.* 2005;159:251-253.
19. Scott DW, Miller WH, Griffin CE. Muller and Kirk's Small Animal Dermatology. 6th ed. Philadelphia (PA): WB Saunders Company; 2001.
20. Sharma SK, Joshi G, Singathia R, Lakhothia RL. Fungal infections in cattle in a gaushala at Jaipur. *Haryana Vet J.* 2010;49:62-63.
21. Slaviero M, Vargas TP, Bianchi MV, Ehlers LP, Spanamberg A, Ferreiro L, et al. *Rhizopus microsporus* segmental enteritis in a cow. *Med Mycol Case Rep.* 2020;8:20-22.
22. Spickler AR, Larson L. Salmonellosis [Internet]. Ames: Iowa State University, CFSPPH; 2013 [cited 2026 Jan 14]. Available from: <http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php>.
23. Sravani G, Ganesan PI. Concurrent infections of *M. audouinii* and *mucormycosis* in buffaloes and their attributed risk factors for fungal infections. *Int J Vet Sci Anim Husb.* 2024;9(3):252-255.
24. Upton A, Marr AK. Emergence of opportunistic mould infections in the hemopoietic stem transplant patient. *Curr Infect Dis Rep.* 2006;8:434-441.
25. Vipparti SJ. Mixed fungal lung infection with *Aspergillus fumigatus* and *Candida albicans* in an immune compromised patient: Case report. *J Clin Diagn Res.* 2014;8(4).
26. Walsh T, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E. Infections due to emerging and uncommon medically important fungal pathogens. *Clin Microbiol Infect.* 2004;10:48-66.

How to Cite This Article

Ganesan PI, Sangita S, Kontham GR, Sahoo B. Studies on the prevalence of fungi in enteric and pneumonic cases of sheep population in Gajapati District, Odisha state. *International Journal of Veterinary Sciences and Animal Husbandry.* 2025;SP-11(1):117-119.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.