

ISSN: 2456-2912
NAAS Rating (2026): 4.61
VET 2026; 11(1): 13-18
© 2026 VET
www.veterinariypaper.com
Received: 07-10-2025
Accepted: 09-11-2025

Pavithra P
MVSc Scholar, Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India

Radhika G
Professor, Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India.

Shynu M
Professor, Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India.

Naicy T
Associate Professor, Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India.

Ambily R
Assistant Professor, Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India.

Bindu KA
Professor and Head, Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India.

Corresponding Author:
Pavithra P
MVSc Scholar, Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India

Comparative evaluation of coagulation pathway in Vechur and Frieswal cattle by analysing Protein S gene

Pavithra P, Radhika G, Shynu M, Naicy T, Ambily R and Bindu K

DOI: <https://www.doi.org/10.22271/veterinary.2026.v11.i1a.2908>

Abstract

The livestock sector in Kerala is a vital contributor to the rural economy, with cattle playing a major role. Native Vechur cattle are noted for disease resistance, whereas Frieswal, the newly registered synthetic breed of Indian milch cattle (62.5% Holstein Friesian \times 37.5% Sahiwal) are recognised for their high milk yield. However, the molecular basis underlying breed-specific differences remains unclear. Comparative proteomic studies were conducted by Centre for Advanced Studies in Animal Genetics and Breeding, Kerala Veterinary and Animal Sciences University (KVASU), highlighted differential expression of immune-related proteins between these two breeds, particularly in the coagulation pathway. The coagulation pathway ensures haemostasis through platelet activation and fibrin clot formation. The present study compared bleeding time (BT) and clotting time (CT) and expression profile of coagulation-related gene Protein S (*PROS1*) in Vechur and Frieswal cattle.

The BT and CT were evaluated in eighty animals (40 from Vechur and 40 from Frieswal) and relative gene expression of *PROS1* was analysed in blood from healthy heifers ($n = 6$ per breed) by qPCR using β -Actin as reference gene. Relative fold change was calculated using $2^{-\Delta\Delta Ct}$ method and results were analysed statistically using SPSS V.24.0. No significant differences were observed in BT and CT and expression analysis of *PROS1* in Vechur compared to Frieswal cattle. Polymorphism studies using targeted amplicon sequencing (TAS) revealed four single nucleotide polymorphisms (SNPs) in Vechur cattle. Although haemostatic parameters and *PROS1* expression were comparable between Vechur and Frieswal cattle, the identification of SNPs through targeted amplicon sequencing provides a basis for future association and functional studies in larger populations to elucidate their biological implications.

Keywords: Coagulation cascade, Vechur, Frieswal, *PROS1*

1. Introduction

Vechur cattle, the smallest *Bos indicus* breed of India, showed strong adaptability to climate and disease resistance, whereas Frieswal cattle are selected mainly for milk production. Hence, comparative proteomic studies were conducted by Centre for Advanced Studies in Animal Genetics and Breeding, Kerala Veterinary and Animal Sciences University, which highlighted differential expression of serum proteins and downstream bioinformatics analysis revealed significant difference in coagulation pathway between Vechur and Frieswal cattle. Therefore, the present study aimed to evaluate the differences in BT, CT and expression of coagulation related gene *PROS1* in whole blood, between the two breeds. Haemostasis halts bleeding following vascular injury through three integrated phases- primary vascular-platelet response, coagulation cascade, and regulatory anticoagulant mechanisms^[1,2]. Protein S is a vitamin K-dependent plasma glycoprotein with essential antithrombotic functions. It is encoded by *PROS1* gene (Location: Chromosome one; Exon count: 15). Target gene expression for elucidating the molecular basis of breed-specific disease resistance was studied^[3]. The TAS focused on specific genes or loci, providing high sensitivity and specificity for variant detection^[4,5]. In line with these approaches, the present study comparatively evaluated the expression and polymorphisms of the coagulation-related gene *PROS1* to elucidate breed-specific molecular differences underlying disease resistance.

2. Materials and methods

2.1 Animals and sampling

Eighty animals (40 Vechur and 40 Frieswal) were selected based on pedigree records for the study. For determination of BT and CT, samples were collected from 40 Vechur cattle maintained at Vechur cattle conservation unit, Mannuthy and 40 Frieswal cattle selected from different ICAR Field Progeny Testing (FPT) units, Cattle Breeding Farm, Thumkur Muzhly and University Livestock Farm, Mannuthy. For gene expression analysis, blood samples were collected from apparently healthy heifers (18- 24 months old), six each of Vechur and Frieswal cattle, in EDTA vials and processed immediately.

2.2 Estimation of Bleeding and Clotting Time

Bleeding Time (BT) was measured using Duke's method and Clotting Time (CT) was assessed using the capillary tube method.

2.2.1 Duke's Test

The animal was restrained properly to avoid movement. The hairs around the ear pinna were clipped and cleaned with antiseptic. Then using a sterile needle, a shallow skin prick was made. As soon as the blood appeared, the timer was started and in every 30 sec, the drop of blood was blotted with filter paper gently, without touching the skin surface so that clotting was not disturbed. The timer was stopped when bleeding completely stopped at the puncture site. The bleeding time was recorded in minutes and seconds.

2.2.2 Capillary Tube Test

The animal was restrained properly to avoid movement. The

site, usually ear vein was cleaned with antiseptic to prevent contamination. The vein was punctured using sterile needle. Blood was then allowed to enter the capillary tube via capillary action. The timer was started as soon as blood entered the tube. Small sections of the capillary tube were broken every 30 sec. The tube was separated gently to check for a fibrin strand bridging the broken ends. The timer was stopped as soon as visible fibrin strand appeared.

2.3 RNA isolation

Total RNA was isolated using TRIzol® LS reagent (Life Technologies, USA) and total RNA isolation kit (ORIONX Total RNA Isolation Kit, Cat. No. ODP419) followed by DNase treatment. RNA quality and concentration were assessed using NanoDrop spectrophotometer and agarose gel electrophoresis. cDNA synthesis was done using Origin cDNA synthesis kit.

2.4 Quantitative PCR

Quantitative PCR (qPCR) was employed to determine the relative expression of the candidate gene *PROS1*, using *β-actin* as the reference gene. Primers targeting short regions of these genes were designed from bovine mRNA sequences (*PROS1*: NM_174438.1; *β-actin*: NM_173979.3). Primer3 (v4.1.0) was used for primer designing, and primer characteristics such as Tm and GC content were evaluated using the PCR Primer Stats tool. Primers were positioned towards the 3' end and across exon-exon junction to avoid genomic DNA amplification. Custom-synthesised primers (Sigma-Aldrich) were diluted to contain 10 pmol/μL, and details of sequences and properties are provided in Table 1.

Table 1: Sequences and properties of primers designed for qPCR

S. No	Primer Name	Accession number of the mRNA sequences	Primer Sequence (5'-3')	Product size (bp)
1	<i>PROS1</i> F	NM_174438.1	5'-CTTGGTCTCTGATTGCGCTT-3'	124
2	<i>PROS1</i> R		5'-TCCACAGAGACCATATGCCA-3'	
3	<i>β-Actin</i> F	NM_173979.3	5'-TGCAGCATTCAAGAACTAC-3'	147
4	<i>β-Actin</i> R		5'-CCAGGGCAGTGATCTCTTCTG-3'	

Gradient PCR was performed and optimised conditions were applied for qPCR. The qPCR followed Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, which specified the minimum information necessary for evaluating qPCR experiments [6]. Reactions

were performed in technical triplicates. Details of the reaction mixture, cycling conditions and primer-specific annealing temperatures are provided in Table 2 and 3. Following amplification, a melt curve analysis was performed to confirm amplification specificity.

Table 2: Reaction mixture used for qPCR

SI. No	Components	Volume (μL)
1	Template (cDNA) *	0.5
2	SsoAdvanced™ Universal SYBR® Green Supermix (2X)	5.0
3	Forward Primer (10 pmol /μL)	0.3
4	Reverse primer (10 pmol /μL)	0.3
5	Nuclease free water*	3.9
	Total reaction volume	10.0

*Added individually based on concentration and adjusted accordingly

Table 3: PCR conditions used for qPCR

SI. No	Steps	Temperature (°C)	Duration
1	Initial denaturation	95	10 min
2	Denaturation	95	15 sec
		<i>PROS1</i>	60.3
		<i>β-Actin</i>	60.4
4	Extension	72	20 sec
			30 sec
Steps 2 to 4 were repeated for 40 cycles Data acquisition was performed during the extension step			

Relative expression was calculated using the $2^{-\Delta\Delta Ct}$ method [7], assuming equal amplification efficiencies. Fold changes reflected differences between treated and control groups. Statistical analysis was performed using independent t-tests followed by Duncan's multiple range test, using SPSS version 24.0 with significance set at $p < 0.05$.

2.5 Targeted amplicon sequencing

The TAS was performed using Oxford Nanopore Technology on Vechur cDNA. The quality and quantity of cDNA were assessed using NanoDrop One and samples with acceptable OD260/280 ratios were selected. PCR amplification was carried out in 25 μ L reactions containing 100 ng cDNA, gene-specific primers (10 pmol/ μ L) and KAPA HiFi Hot Start Ready Mix. Amplicon quality was verified on 1.2% agarose gel. Libraries were prepared using the Ligation Sequencing Kit with Native Barcoding (SQK-LSK114), following end-repair, barcoding, pooling and AMPure XP bead purification. The final library was quantified using Qubit and sequenced on an Oxford Nanopore Mk1D platform. Basecalling was performed using Dorado to generate FASTQ files. Bioinformatics analysis included quality control, alignment using the minimap2-based EPI2ME pipeline, SNP calling with samtools and bcftools, and consensus polishing using Medaka. Neural-network-based correction was done to improve the accuracy of Nanopore-derived reads and produce a reliable final sequence output for each amplicon.

3. Results and discussion

The present study evaluated BT, CT and the expression of *PROS1* in Vechur and Frieswal cattle to understand potential breed-level differences in haemostatic regulation. Mean BT and CT values of both breeds are presented in Table 4. The study observed no significant difference in BT between Vechur and Frieswal cattle, indicating comparable primary haemostatic function in both the breeds. The BT reflected the overall efficiency of primary haemostasis, as it measured the period from induction of a standardised vascular injury to the cessation of bleeding and integrated the functional status of the vessel wall, platelets, and coagulation cascade [8]. The BT in healthy Hereford cattle was reported as 3.8 ± 1.6 minutes [9], which is lower than the results obtained for healthy Vechur

and Frieswal cattle in the present study. The difference could probably be due to the difference in genetic constitution between these groups of animals.

Similarly, CT assessed using the capillary tube test also showed no significant difference ($p > 0.05$) between the two breeds. In the process of determining which animal models most adequately mimicked human clotting parameters, clotting parameters were assessed in Friesian calves (n=18) and it was reported that extrinsic and intrinsic clotting time were significantly prolonged in calves compared to humans (249.9 ± 91.3 and 376.4 ± 124.4 s vs. 63.5 ± 11.8 and 192.5 ± 29.0 s, respectively, $p < 0.01$) [10]. The present study observed CT values (Table 4) longer than those reported by Hasan and Alsaad (2018) who evaluated the blood coagulation indices in healthy vs bovine viral diarrhoea infected cattle (n= 494) in Iraq, wherein the CT averaged 3.38 ± 0.92 min for healthy adult cattle [11]. Though previous observations suggested that haemostatic profiles may vary across breeds, the present study did not show any significant difference between the breeds.

Table 4: Mean Bleeding time and Clotting time in Vechur and Frieswal cattle, min

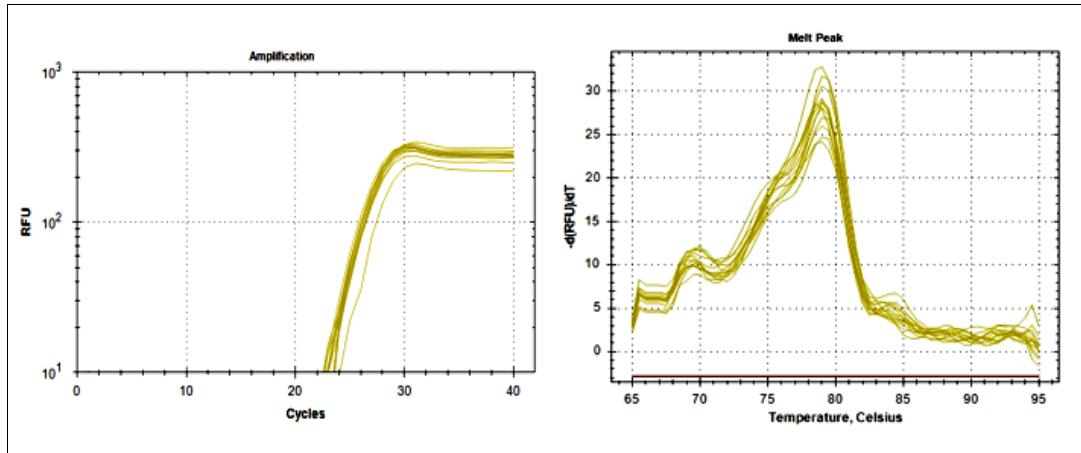
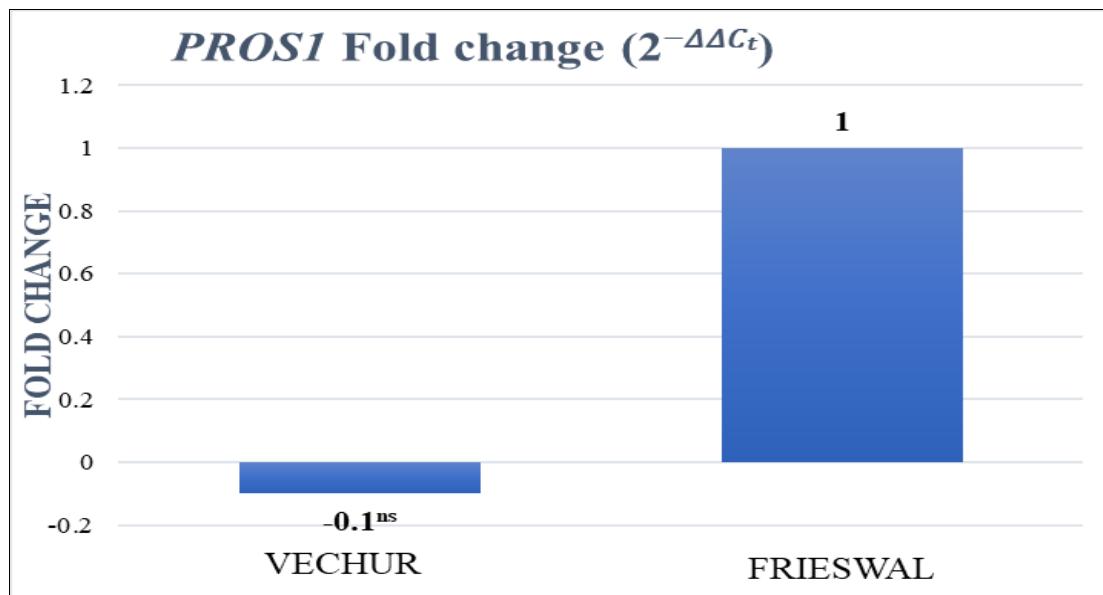
Breed	Bleeding Time (min)	Clotting Time (min)
Vechur	4.20 ± 0.66 ns	5.03 ± 0.70 ns
Frieswal	4.49 ± 0.70	4.71 ± 0.74

ns No significant difference at $p < 0.05$

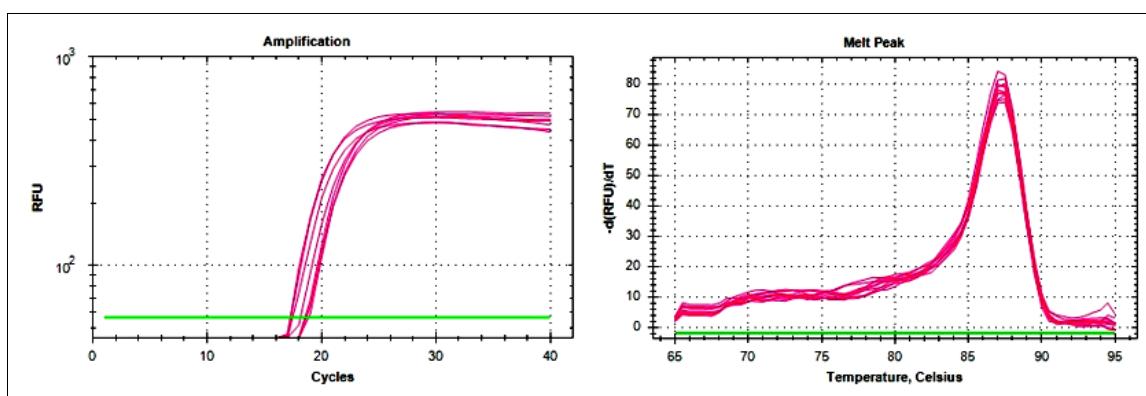
The amplification plot and melt curve of *PROS1* and β -Actin are shown in Fig. 1 to Fig. 3. The *PROS1* expression did not differ significantly between Vechur and Frieswal cattle ($p > 0.05$), indicating comparable regulation of the anticoagulant arm of the haemostasis in both breeds (Table 5). The free form of *PROS1* provided anticoagulant activity while the bound form participated in complement regulation [12]. Natural anticoagulant genes like *PROS1*, counter balanced clot formation and maintained vascular integrity [13]. As a key anticoagulant, *PROS1* functioned as a major cofactor for activated protein C and tissue factor pathway inhibitor [14] and directly inhibited the FVa-FXa prothrombinase complex [15]. Deficiency in *PROS1* is associated with inherited thrombophilia [10] and acquired hypercoagulable states [16].

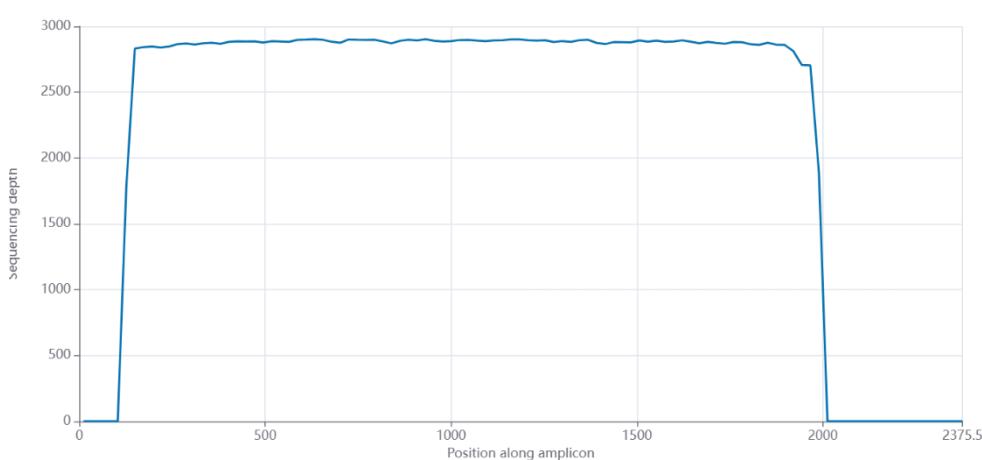
Table 5: Relative expression analysis of *PROS1* in Vechur and Frieswal cattle

Group	Mean Ct \pm SE		$\Delta Ct \pm SE$	$\Delta\Delta Ct \pm SE$	Fold change from control ($2^{-\Delta\Delta Ct}$)	p value
	<i>PROS1</i>	β -Actin				
Vechur	24.79 ± 0.06	17.96 ± 0.11	6.83 ± 0.13	0.15 ± 0.16	0.89 ns(0.82 - 0.98)	>0.05
Frieswal	24.37 ± 0.05	17.69 ± 0.08	6.68 ± 0.10	0.00 ± 0.10	1 (0.9 - 1.07)	



ns No significant difference at $p < 0.05$

Targeted amplicon sequencing of cDNA of Vechur cattle for *PROS1* using Oxford Nanopore Technology, generated high-quality reads with adequate coverage (78%) across the target gene (Fig.4). Variant calling identified four SNPs in *PROS1*, each supported by high sequencing depth (~300 \times), indicating robust read support for the detected variants (Table 6). Though no significant difference was observed in *PROS1* transcript levels between Vechur and Frieswal cattle, the presence of sequence variation suggested underlying genetic diversity in the coagulation pathway. Functional studies demonstrated that missense mutations in *PROS1* led to Protein S deficiency by producing unstable or poorly secreted proteins with impaired anticoagulant activity, without


significantly altering mRNA expression [17]. Multiple coding variants were identified in human *PROS1* associated with lower free Protein S levels and increased risk of venous thromboembolism in humans, illustrating how SNPs in *PROS1* can alter coagulation parameters [18]. A family carrying heterozygous *PROS1* mutations was associated with increased risk of thrombosis, highlighting the functional impact of *PROS1* genetic variation in coagulation [19]. The presence of SNPs in *PROS1* without baseline haemostatic differences align with the previous studies, suggesting underlying genetic variation that effects at the protein level during stress conditions rather than altering transcript abundance.


Table 6: Variant table showing the position of SNP

S. No.	mRNA Position	Reference Allele	Alternate Allele
1	182	G	A
2	962	T	C
3	995	T	C
4	1711	G	C

Fig. 1. Amplification plot and melt curve of *PROS1* in Vechur and Frieswal cattleFig 2: Relative expression of *PROS1* showing fold changes

^{ns} Non-significant at p >0.05

Fig 3: Amplification plot and melt curve of β -Actin in Vechur and Frieswal

Fig. 4: Coverage plot of *PROS1* showing high sequence depth

4. Conclusion

The study revealed that BT, CT and *PROS1* gene expression were comparable between Vechur and Frieswal cattle, indicating similar haemostatic regulation at the phenotypic and transcriptional levels. In this context, the SNPs identified in Vechur cattle may represent cryptic genetic variation that does not affect baseline haemostatic parameters but could influence Protein S function under physiological stress, warranting validation in larger cattle populations. These findings provide a foundation for future large-scale population and functional studies to elucidate the potential biological significance of these polymorphisms in relation to breed-specific disease resistance and coagulation dynamics.

5. Acknowledgment

The authors are thankful to the Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy for providing necessary institutional facilities to conduct this study.

I also thank ICAR- Field progeny testing scheme for Frieswal bulls, KVASU for the research support

6. Conflict of Interest

The authors have no conflict of interest to declare.

References

- Roy B, Banerjee I, Sathian B, Mondal M, Saha CG. Blood group distribution and its relationship with bleeding time and clotting time: a medical school-based observational study among Nepali, Indian and Sri Lankan students. *Nepal J Epidemiol.* 2011;1(4):135-140.
- Raber MN. Coagulation tests. In: Walker HK, Hall WD, Hurst JW, editors. *Clinical Methods: The History, Physical, and Laboratory Examinations*. 3rd ed. Boston: Butterworths; 1990.
- Divya PD, Shynu M, Jayavardhanan KK, Uma R, Aravindakshan TV, Radhika G. Role of microRNA, bta-miR-375 in immune sturdiness of Vechur: the native cattle breed of Kerala, India. *Helion.* 2023;9(12):eXXXXX.
- Paskey AC, Frey KG, Schroth G, Gross S, Hamilton T, Bishop-Lilly KA. Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples. *BMC Genomics.* 2019;20:155.
- Bewicke-Copley F, Kumar EA, Palladino G, Korfi K, Wang J. Applications and analysis of targeted genomic sequencing in cancer studies. *Comput Struct Biotechnol J.* 2019;17:1348-1359.
- Bustin SA, Ruijter JM, van den Hoff MJ, Kubista M, Pfaffl MW, Shipley GL, et al. MIQE 2.0: revision of the minimum information for publication of quantitative real-time PCR experiments guidelines. *Clin Chem.* 2025;71(6):634-651.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods.* 2001;25:402-408.
- Pichler L. Parameters of coagulation and fibrinolysis in different animal species—a literature-based comparison. *Wien Tierarztl Monatsschr.* 2008;95(11-12):282-295.
- Bell TG, Meyers KM, Prieur DJ, Fauci AS, Wolff SM, Padgett GA. Decreased nucleotide and serotonin storage associated with defective function in Chediak-Higashi syndrome cattle and human platelets. *Blood.* 1976;48(2):175-184.
- Mizuno T, Tsukiyama T, Takewa Y, Tatsumi E. Differences in clotting parameters between species for preclinical large animal studies of cardiovascular devices. *J Artif Organs.* 2018;21(2):138-141.
- Hasan SD, Alsaad KM. Evaluation of clinical, hematological, blood coagulation and some biochemical parameter changes in clinically infected cattle with bovine viral diarrhea. *IOSR J Agric Vet Sci.* 2018;11:64-70.
- Garcia de Frutos P, Fuentes P, Hurtado B, Sala N. Molecular basis of protein S deficiency. *Thromb Haemost.* 2007;98:543-556.
- Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C: biased for translation. *Blood.* 2015;125(19):2898-2907.
- Alshaikh NA. Protein S: a central regulator of blood coagulation. *Clin Lab.* 2022;68(8).
- Palta S, Saroa R, Palta A. Overview of the coagulation system. *Indian J Anaesth.* 2014;58:515-523.
- Majumder R, Nguyen T. Protein S: function, regulation, and clinical perspectives. *Curr Opin Hematol.* 2021;28(5):339-344.
- Hurtado B, Muñoz Miralles X, Mulero Roig MC, Navarro Brugal G, Domènech P, García de Frutos P, et al. Functional characterization of twelve natural *PROS1*

mutations associated with anticoagulant protein S deficiency. *Haematologica*. 2008;93(4):574-580.

18. Larsen OH, Kjaergaard AD, Hvas AM, Nissen PH. Genetic variants in the protein S (PROS1) gene and protein S deficiency in a Danish population. *TH Open*. 2021;5(4):e479-e488.

19. Zhang YP, Lin B, Ji YY, Hu YN, Lin XF, Tang Y, *et al.* A thrombophilia family with protein S deficiency due to protein translation disorders caused by a Leu607Ser heterozygous mutation in PROS1. *Thromb J*. 2021;19(1):64.

How to Cite This Article

Pavithra P, Radhika G, Shynu M, Naicy T, Ambily R and Bindu K. Comparative evaluation of coagulation pathway in Vechur and Frieswal cattle by analysing Protein S gene. *International Journal of Veterinary Sciences and Animal Husbandry*. 2026; 11(1): 13-18.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.