

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; SP-10(9): 31-36 © 2025 VET

www.veterinarypaper.com Received: 13-08-2025 Accepted: 12-09-2025

LN Verma

Subject Matter Specialist, Animal Science, Krishi Vigyan Kendra, Jaipur, Rajasthan,

Ajesh Kumar

Assistant Professor, Animal production, College of Agriculture, Nagaur, Rajasthan, India

A comprehensive study on feeding practices adopted by Guiri goat farmers in Rajasthan

LN Verma and Ajesh Kumar

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i9Sa.2580

Abstract

The present study assessed and compared feeding practices adopted by Gujri goat farmers in Jaipur and Nagaur districts of Rajasthan. A total of 200 respondents, comprising 100 from each district, were surveyed through structured interviews. Data were analyzed using the Chi-square test to evaluate regional differences in feeding behaviors and resource utilization. The findings revealed that semi-stall feeding was the predominant (84.5%), significant inter-district differences in feeding system ($\chi^2 = 7.70$), grazing site ($\chi^2 = 15.456$) and grazing duration ($\chi^2 = 10.01$). Majority farmers grazed goats on community lands (86.5%), and most farmers allowed grazing for more than 5 hours daily (82.5%). Use of green fodder (58%), chopping (44.5%), fodder preservation (35.5%) and tree leaves (6.5%) was practiced with statistically significant variation across district. Concentrate feeding was widely practiced (92.5%), with 60.5% of farmers soaking the feed before offering. While salt supplementation (88%) was widespread, mineral mixture use was low (11%). The findings highlight regional disparities in feeding management and suggest the need for location-specific extension strategies to improve feeding efficiency and productivity.

Keywords: Jaipur, Nagaur, Rajasthan, Gujri goat, feeding, semi-stall feeding, grazing management, fodder, concentrate

Introduction

Goat rearing is a vital livelihood activity in arid and semi-arid India and India leading ranks first globally in goat population (148.88 million; 20th Livestock Census, 2019). Rajasthan alone contributes 35.86% of national goat milk production (Basic Animal Husbandry Statistics, 2024) ^[1], underling its importance in small ruminant dairying. Among various breeds of goat, the Gujri goat, found mainly in Jaipur and Nagaur, is prized for its adaptability, good milk yield, and meat quality. However, productivity remains low due to traditional feeding practices or poor feeding, fodder scarcity, and overdependence on common grazing lands. Feeding accounting for 60-70% of costs mainly relies on crop residues and tree leaves, with little use of concentrates or supplements. Despite government schemes like RKVY, NLM and Livestock Insurance, awareness and adoption remain low among smallholders. Marketing is also a challenge, with goat rearers facing distress sales and limited access to organized markets, despite strong demand, especially during festivals. This study analyzes feeding management of Gujri goat farmers in Jaipur and Nagaur to identify gaps and recommend strategies for improved productivity and farmer income.

Materials and Methods

A field survey (2023-2024) was conducted to study the management practices of Gujri goat in 20 villages of Jaipur and Nagaur district, Rajasthan, covering 200 Gujri goat farmers. From each tehsil, five villages were selected based on goat population, and 10 farmers per village were randomly chosen. Data were collected through personal interviews using a pre-tested schedule, supported by visual observation and record verification. The schedule covered aspects like breeding, feeding, housing, and health care practices. Data were analyzed using percentages, frequencies, and Chi-square (χ^2) tests at the 5% significance level.

Corresponding Author: LN Verma Subject Matter Special

Subject Matter Specialist, Animal Science, Krishi Vigyan Kendra, Jaipur, Rajasthan, India

Results and Discussion Feeding System

Semi-stall feeding was the most predominant practices, adopted by 84.5% of Gujri goat farmers (83% in Jaipur; 86% in Nagaur). In contrast, only 7.5% followed complete stall feeding and 8% complete grazing. The Chi-square test showed a significant association between feeding practices and district (χ^2 =7.70, P=0.021), indicating notably regional variation. These results align with earlier studies: Singh *et al.* (2020) [23] found the semi-stall feeding widely adopted, Sahebrao *et al.* (2023) [21] observed that 60% of goat farmers using this system, highlighting its practicality and adaptability.

Grazing site

Most Gujri goat farmers (86.50%) grazed their goats on community land, with 77.00% in Jaipur and 96.00% in Nagaur, while only 13.50% used their own land. A highly significant association was found between grazing site and district ($\chi^2 = 15.456$, P=0.000). Similar trends were reported by Jayashree *et al.* (2014) ^[7], Mordia (2017) ^[17], and Sahebrao *et al.* (2023) ^[21], who also reported a strong preference for community pastures due to limited private land and cost-effective access to common grazing resources.

Grazing hours

The majority of Gujri goat farmers (82.5%) grazed goat for more than 5 hours daily, with 74% in Jaipur and 91% in Nagaur, while only 17.5% grazed for less than 5 hours. The inter-districts difference was highly significant ($\chi^2 = 10.01$, P=0.001). These results agree with Gurjar (2006) ^[4], Sabapara *et al.* (2014) ^[20], and Jana *et al.* (2014) ^[6], who reported that over half of the farmers grazed goats for 4-6 hours. Extended grazing reduces feed costs and improves nutrition intake.

Green fodder feeding

About 58% of Gujri goat farmers provided green fodder (61% in Jaipur and 55% in Nagaur), while 42% did not feed green fodder. The Chi-square analysis showed no significant interdistrict difference ($\chi^2 = 0.738$, P=0.390), indicating a fairly uniform practice. These findings support the observations of Gurjar *et al.* (2009) ^[5], Kumar *et al.* (2021) ^[11], and Singh *et al.* (2020) ^[23]. Singh *et al.* further reported that 45.83% of farmers offered green fodder to the entire flock, while others provided it selectively to milking does (33.33%) or kids (20.83%). The moderate use of green fodder suggests farmers supplement natural grazing based on availability, economic capacity, or production stage of the animals.

Chopping green fodder

The study revealed that 44.50% of Gujri goat farmer's chopped green fodder before feeding (54.00% in Jaipur and 35.00% in Nagaur) while 55.5% of farmers (46.00% in Jaipur and 65.00% in Nagaur) did not chop green fodder. The Chisquare test showed a significant association between fodder chopping and district ($\chi^2 = 7.308$, P=0.006). Similar results were reported by Kumawat (2016) [9] and Khadda (2017) [8], who reported limited adoption of fodder chopping among goat farmers. Although chopping green fodder enhances digestibility and reduces wastage, but its lower adoption may be due to lack of equipment or awareness, particularly in Nagaur.

Type of green fodder used

The study revealed that among Gujri goat farmer, monsoon grass was the most commonly used as green fodder (32.50%

overall; 35.00% in Jaipur, 30.00% in Nagaur), followed by weeds (28.00%), lucerne (27.50%), and bajra (11.50%). The Chi-square test showed no significant difference between the two districts ($\chi^2 = 6.452$, P=0.091), indicating similar fodder preferences across regions. These findings are in conformity with the results of Sandhu *et al.* (2018) [22] and Singh (2020) [23], who also reported widespread use of natural grasses, weeds, and leguminous fodder like lucerne among small ruminant farmers. The choice of monsoon grass and weeds reflects seasonal availability and low input dependence, making them a practical option for resource-limited farmers.

Preservation of excess green fodder

The study showed that only 35.50% of Gujri goat farmers practiced preservation of excess green fodder, with 25.00% in Jaipur and 46.00% in Nagaur while majority (64.50%) did not preserve fodder. The Chi-square analysis revealed a significant association between fodder preservation and district ($\chi^2 = 9.632$, P=0.001), indicating regional variation in adoption. These findings are consistent with Manohar *et al.* (2014) ^[15], Kumawat (2016) ^[9], and Singh *et al.* (2020) ^[23], who reported that only about 35% of goat farmers preserved fodder such as tree leaves, while most did not. Limited adoption may be attributed to lack of awareness, insufficient storage facilities, or traditional dependence on seasonal grazing on seasonal gazing and fresh forage. Promoting fodder preservation could improve year-round feed availability and animal productivity.

Preservation of tree leaves

The study revealed that only 6.50% of Gujri goat farmers practiced preservation of tree leaves, with 2.00% in Jaipur and 11.00% in Nagaur, whereas vast majority (93.50%) did not adopt this practice. The Chi-square test indicated a significant difference between districts ($\chi^2 = 6.664$, P=0.009), highlighting regional variation in awareness or adoption. These findings align with the observations of Rai and Singh (2004) [18], Gurjar (2006) [4], and Kumar *et al.* (2016) [12], who also reported low adoption (around 7.5%) of tree leaf preservation despite its importance as a fodder source during dry seasons. Encouraging farmers to preserve tree leaves could enhance feed availability during periods of scarcity and improve overall flock nutrition.

Lopping of the tree

The study showed that a large majority (82.50%) of Gujri goat farmers practiced lopping of trees for fodder, with 73.00% in Jaipur and a higher 92.00% in Nagaur adopting this method. While only 17.50% of farmers did not engage in tree lopping. The Chi-square test revealed a highly significant association between tree lopping and district ($\chi^2 = 12.502$, P=0.000), indicating notable regional differences. These findings are in line with the results of Jana *et al.* (2014) ^[6] and Sabapara *et al.* (2014) ^[20], who also reported widespread tree lopping among goat farmers. Lopping is a common and cost-effective practice for providing green fodder, especially during lean seasons, and reflects traditional knowledge of utilizing locally available tree species to support animal nutrition.

Feeding of dry fodder

The study found that 65% of Gujri goat farmers provided dry fodder to their goats, with a higher proportion in Jaipur (85%) compared to Nagaur (45%). Conversely, 35% of farmers 15% in Jaipur and 55% in Nagaur did not feed dry fodder. The

Chi-square analysis showed a highly significant association between dry fodder feeding and district ($\chi^2 = 35.166$, P=0.000), indicating distinct feeding behaviors across regions. These findings are in conformity with those of Mordia (2017) [17] and Sahebrao *et al.* (2023) [21], who reported that around 68.75% of goat farmers supplemented with dry fodder. The higher adoption in Jaipur suggests better availability or awareness, whereas the lower usage in Nagaur highlights the need for improved fodder management strategies in semi-arid areas.

Chopping the dry fodder

The study revealed that only 21% of Gujri goat farmers always chopped dry fodder before feeding, with 34% in Jaipur and 8% in Nagaur. About 14% of farmers chopped it sometimes, while a majority (65%) never chopped dry fodder 50% in Jaipur and 80% in Nagaur. The Chi-square test indicated a highly significant association between chopping practices and district ($\chi^2=23.592,\ P=0.000$), reflecting significant regional variation. These findings are in agreement with those of Manohar *et al.* (2014) ^[15], Kumawat (2016) ^[9], and Fogya (2017) ^[3], who also observed that most goat farmers did not regularly chop dry fodder. The low adoption of chopping practices may be due to lack of awareness about its benefits in improving digestibility and reducing wastage, suggesting a need for training and demonstration efforts to encourage better fodder utilization.

Type of dry fodder fed

The present study revealed that Khejri loom was the most commonly used dry fodder among Gujri goat farmers, fed by 58.50% of respondents overall 56% in Jaipur and 61% in Nagaur. Leguminous dry fodder was used by 27% of farmers, while non-leguminous fodder was used by 14.5%. The Chisquare value ($\chi^2 = 3.998$, P=0.135) indicates no significant association between the type of dry fodder fed and the district, suggesting similar feeding preferences across Jaipur and Nagaur. These findings align with the observations of Kumawat (2016) ^[9] and Fogya (2017) ^[3], who reported that Khejri loom as a dominant dry fodder choice among goat farmers in Rajasthan due to its abundance, palatability, and nutritional value, particularly in arid and semi-arid regions.

Concentrate feeding

The study found that a large majority of Gujri goat farmers (92.50%) practiced concentrate feeding, with 97% in Jaipur and 88.00% in Nagaur adopting this practice. Only 7.50% of farmers (3% in Jaipur and 12% in Nagaur) did not feed concentrates. The Chi-square test ($\chi^2 = 5.838$, P=0.015) revealed a significant association between concentrate feeding and district, indicating a notable difference in adoption levels between Jaipur and Nagaur. These findings are in agreement with Sabapara and Kharadi (2015) [19] who emphasized the importance of concentrate feeding in improving goat productivity. The high prevalence of concentrate use among Gujri goat farmers reflects an increasing awareness of its benefits in production and reproductive performance.

Type of concentrate used

The study revealed that the majority of Gujri goat farmers (64.50%) used single ingredient concentrates, with 59% in Jaipur and 70% in Nagaur adopting this practice. About 16% of farmers used ready-made concentrates (20% in Jaipur and 12% in Nagaur), while 12% prepared concentrates at home (18% in Jaipur and 6% in Nagaur). A small proportion

(7.50%) did not use any of the listed concentrate types. The Chi-square value ($\chi^2=14.338$, P=0.002) indicates a highly significant association between the type of concentrate used and the district. These findings align with the observations of Jana *et al.* (2014) ^[6], Mandavkar *et al.* (2015) ^[14], Mordia (2017) ^[17], and Sandhu *et al.* (2018) ^[22], who also reported a preference for single ingredient concentrates such as grains or oil cakes due to their cost-effectiveness and local availability. The relatively lower use of home-prepared or ready-made mixes may reflect constraints such as time, knowledge, and access to commercial feeds.

Time of concentrate feeding

The data indicate that 51% of Gujri goat farmers fed concentrate prior to milking (54% in Jaipur and 48% in Nagaur). About 41.50% of farmers provided concentrate during milking (43% in Jaipur and 40% in Nagaur), while a small proportion (7.50%) did not feed concentrate at all. The Chi-square test value ($\chi^2 = 5.860$, P=0.053) suggests that the association between feeding time and district is not statistically significant, although close to the threshold of significance. These findings are consistent with those of Gurjar *et al.* (2009) ^[5] and Sandhu *et al.* (2018) ^[22], who reported that most goat farmers prefer feeding concentrate around milking time to enhance milk yield and maintain animal energy balance. The similar trends across Jaipur and Nagaur indicate a common understanding of feeding practices linked to lactation efficiency.

Quantity of concentrate fed

The study revealed that the majority of Gujri goat farmers (49.50%) fed 100-200 grams of concentrate per animal per day, with slightly more in Nagaur (55%) than Jaipur (44%). About 33% of the farmers provided 200-300 grams, and 10% fed more than 300 grams. Only 7.50% did not feed any concentrate. A statistically significant association was found between quantity of concentrate fed and district ($\chi^2 = 11.392$, P=0.010), indicating regional differences in feeding levels. These findings align with the observations of Lavania *et al.* (2014) [13], Dar *et al.* (2016) [2], and Fogya (2017) [3], who reported that most farmers provided moderate amounts, mainly 100-200 g, reflecting a cost-effective strategy to enhance productivity while managing feed expenses in semi-arid regions.

Feed supplement with salt

The study showed that a vast majority of Gujri goat farmers (88%) provided salt as a feed supplement, (84% in Jaipur and 92% in Nagaur). Only 12% of the total respondents did not include salt in their goats' diet. The Chi-square test result (χ^2 = 2.320, P=0.128) suggests that the difference in salt supplementation between the two districts was not statistically significant. These findings are in agreement with the observations of Mohan *et al.* (2008) [16], Gurjar *et al.* (2009) [5] and Mordia (2017) [17], who also reported widespread use of salt supplements among goat farmers. Salt is a critical dietary component that enhances appetite, improves nutrient absorption, and maintains electrolyte balance, particularly in arid and semi-arid regions like Rajasthan.

Feeding of mineral mixture

The study revealed that only 11% of Gujri goat farmers provided mineral mixtures to their goats, with 15% in Jaipur and just 7% in Nagaur while 89% of farmers did not use mineral supplementation.

Table 1: Feeding practices adopted by Gujri goat farmers

		Jaip			gaur	Ove		2.	
S. No.	Feeding Practices	F	%	F	%	F	%	χ² Value	P-Value
1.				System o	of feeding		, , ,		
a	Complete stall feeding	12	12.00	3	3.00	15	7.50		
b	Semi stall feeding	83	83.00	86	86.00	169	84.50	7.70	0.021
c	Complete grazing	5	5.00	11	11.00	16	8.00		
2.		1	1	Grazi	ng site	1	1		
a	Own land	23	23.00	4	4.00	27	13.50	15.456	0.000
b	Community land	77	77.00	96	96.00	173	86.50		
3.	T 4 61	1 26	26.00	1	g hours	2.5	17.50		
a	Less than 5 hours	26	26.00	9	9.00	35	17.50	10.01	0.001
b	More than 5 hours	74	74.00	91	91.00	165	82.50		
4.	Yes	61	61.00	55 55	der feeding 55.00	116	58.00		
a b	No	39	39.00	45	45.00	84	42.00	0.738	0.390
5.	110	37		_	reen fodde		42.00		
a	Yes	54	54.00	35	35.00	89	44.50		
b	No	46	46.00	65	65.00	111	55.50	7.308	0.006
6.	Type of green fodder used								
a	Lucerne								
b	Bajra	12	12.00	11	11.00	23	11.50	6 452	0.091
С	Weeds	20	20.00	36	36.00	56	28.00	6.452	
d	Monsoon grass	35	35.00	30	30.00	65	32.50		
7.					cess green				
a	Yes	25	25.00	46	46.00	71	35.50	9.632	0.001
b	No	75	75.00	54	54.00	129	64.50	7.002	3.001
8.					of tree leav			-	
a	Yes	2	2.00	11	11.00	13	6.50	6.664	0.009
b	No	98	98.00	89	89.00	187	93.50		
9.	V	72			of the tree	1.65	92.50		
a b	Yes No	73	73.00	92	92.00 8.00	165 35	82.50 17.50	12.502	0.000
10.	INO	21			dry foddei		17.50		
a	Yes	85	85.00	45	45.00	130	65.00		
b	No	15	15.00	55	55.00	70	35.00	35.166	0.000
11.	110	13			e dry fodd		33.00		
a	Always	34	34.00	8	8.00	42	21.00		
b	Sometime	16	16.00	12	12.00	28	14.00	23.592	0.000
с	Never	50	50.00	80	80.00	130	65.00		
12.		- N	Т	ype of dry	y fodder fee	d			
a	Leguminous	30	30.00	24	24.00	54	27.00		
b	Non-leguminous	14	14.00	15	15.00	29	14.50	3.998	0.135
c	Khejri loom	56	56.00	61	61.00	117	58.50		
13.					ate feeding				
a	Yes	97	97.00	88	88.00	185	92.50	5.838	0.015
b	No	3	3.00	12	12.00	15	7.50	3.030	0.013
14.		1		î .	centrate us			·	
a	Home prepared	18	18.00	6	6.00	24	12.00	14.338	0.002
b	Single ingredient	59	59.00	70	70.00	129	64.50		
c	Ready made	20	20.00	12	12.00	32	16.00		
d 15.	None of above	3	3.00	12	12.00 entrate feed	15	7.50		
15. a	No	3	3.00	12	12.00	15	7.50		
b b	Prior to milking	54	54.00	48	48.00	102	51.00	5.860	0.053
c	During milking	43	43.00	40	40.00	83	41.50	5.000	0.033
16.	Daring minking	1-7-3			centrate n		11.50		
a	Boiling	16	16.00	9	9.00	25	12.50	4.833	0.089
b	Soaking	63	63.00	58	58.00	121	60.50		
c	Grinding	21	21.00	33	33.00	54	27.00		
17.	<u> </u>	•			oncentrate				
a	No	3	3.00	12	12.00	15	7.50		
b	100–200 gm	44	44.00	55	55.00	99	49.50	11.392	0.010
С	200–300 gm	40	40.00	26	26.00	66	33.00		
d	More than 300 gm	13	13.00	7	7.00	20	10.00		
18.		1			nent with s		, ,	-	
a	Yes	84	84.00	92	92.00	176	88.00	2.320	0.128
b	No	16	16.00	8	8.00	24	12.00	0	3.120
19.	*7	1 15			ineral mixt		11.00	ı	
a 1-	Yes	15	15.00	7	7.00	22	11.00	3.269	0.071
b 20	No 85 85.00 93 93.00 178 89.00 5.20 5.071 Frequency of water								
20.	Once in 24 hrs	0	0.00	Frequenc		0	0.00		
a b	Twice in 24 hrs	37	37.00	45	0.00 45.00	0 82	0.00 41.00	1.323	0.250
С	Thrice in 24 hrs	63	63.00	55	55.00	118	59.00	1.343	0.230
	1 III CC III 24 III S	0.5	03.00	33	55.00	110	57.00		

The Chi-square value ($\chi^2 = 3.269$, P=0.071) indicates no statistically significant difference between the two districts. These findings are consistent with the results reported by Lavania *et al.* (2014) [13], Mandavkar *et al.* (2015) [14], and Kumar *et al.* (2021) [11], who also observed limited adoption of mineral mixture feeding among goat farmers. The low usage reflects gaps in awareness or access, despite the critical role mineral mixtures play in improving reproductive performance, immunity and overall productivity in goats.

Frequency of water

The results indicated that a majority 59% of Gujri goat farmers provided water to their goats three times a day, while 41% offered water twice daily. None of the farmers reported watering goats only once a day. The Chi-square analysis ($\chi^2 = 1.323$, P=0.250) showed no significant difference between Jaipur and Nagaur districts in watering frequency. These findings align with the observations of Kumar (2018) [10] and Singh *et al.* (2020) [23], who reported that most farmers offered water two to three times daily. Frequent watering is essential for maintaining hydration and metabolic functions, especially under arid and semi-arid conditions typical of Rajasthan.

Conclusion

The present study provides valuable insights into the feeding practices adopted by Gujri goat farmers in Jaipur and Nagaur districts of Rajasthan. Semi-stall feeding is the predominant system across both regions, yet significant differences existed in aspects such as feeding management, including the type of feeding system, grazing site, duration, and use of various fodder types and concentrates. Notably, practices such as green fodder use, chopping methods, and preservation techniques showed marked regional variations, underscoring the influence of local resources and traditions. Although supplementation with mineral mixtures and salt was common, it did not vary significantly between districts. These findings for region-specific extension need emphasize the interventions and training programs tailored to local conditions and resources. Promoting awareness and adoption of improved, scientifically based feeding practices can enhancing productivity, resource efficiency, and the overall sustainability of Gujri goat farming in the region.

Conflict of Interest

Not available

Financial Support

Not available

Reference

- Basic Animal Husbandry Statistics. Ministry of Fisheries, Animal Husbandry and Dairying, Government of India; 2024.
- Dar PA, Prajapati KB, Parmar DV. A study on socioeconomic aspects, feeding and breeding practices of goat keepers prevailed in the tribal area of Banaskantha district of north Gujarat. Life Sci Leaflets. 2016;73:75-88
- 3. Fogya SL. A study on cattle management practices adopted by dairy farmers in Jaipur district of Rajasthan [Master's Thesis]. Jobner: S.K.N. College of Agriculture, Sri Karan Narendra Agriculture University; 2017.
- 4. Gurjar ML. Goat husbandry practices in Mewar region of the southern Rajasthan [Ph.D. Thesis]. Udaipur,

- Rajasthan: R.C.A. Campus, Maharana Pratap University of Agriculture and Technology; 2006.
- 5. Gurjar ML, Pathodiya OP, Tailor SP. Feeding practices of goats adopted by the farmers of Mewar region of Southern Rajasthan. Indian J Small Ruminants. 2009;15(1):68-73.
- 6. Jana C, Rahman FH, Mondal SK, Singh AK. Management practices and perceived constraints in goat rearing in Burdwan district of West Bengal. Indian Res J Ext Educ. 2014;14(2):107-110.
- 7. Jayashree R, Jayashankar MR, Nagaraja CS, Satyanarayana K, Isloor S. Goat rearing practices in southern Karnataka. Int J Sci Environ Technol. 2014;3(4):1328-1335.
- 8. Khadda B, Singh B, Singh D, Singh S, Singh J, Singh C, Dar A. Existing breeding management practices followed by Pantja goat keepers in Tarai region of Uttarakhand. Int J Livest Res. 2017;7(10):71-79.
- 9. Kumawat M. Current status of goat management in Jobner area of Jaipur district [M.Sc. thesis]. Jobner: S.K.N. College of Agriculture, Sri Karan Narendra Agriculture University; 2016.
- 10. Kumar DAP, Kunnath SK, Reddy KAK, Sreenivas D. Characterization of local Mahbubnagar goat under field conditions. Int J Livest Res. 2018;8(6):322-327.
- 11. Kumar RD, Sangameswaran R, Selvaraju M, Arunachalam K, Periyannan M, Gopi M. Management practices of sheep and goat farmers in Karur district of Tamil Nadu. Pharma Innov J. 2021;10(6):177-181.
- 12. Kumar S. Indigenous technical knowledge associated with select cattle breeds of Rajasthan: an exploratory study [M.Sc. thesis]. Adugodi, Bengaluru: ICAR-National Dairy Research Institute; 2016.
- 13. Lavania P, Jingar SC, Kumar D, Kumar A, Kantwa SC. Feeding and health care management practices adopted by tribal goat farmers in Sirohi district of southern Rajasthan. J Biol Innov. 2014;3(3):170-175.
- 14. Mandavkar PM, Hanmante AA, Talathi MS. Status of goat farming practices, knowledge and adoption status of technologies in north Konkan coastal zone of Maharashtra. J Krishi Vigyan. 2015;3(2):93-96.
- 15. Manohar DS, Goswami SC, Basant B. Study on feeding management practices of buffaloes in relationship with selected traits of respondents in Jaipur district of Rajasthan. Indian J Anim Res. 2014;48(2):150-154.
- 16. Mohan B, Sagar RL, Singh K. Socio-economic impact of the improved goat farming practices in adopted villages. Indian Res J Ext Educ. 2008;8(1):36-38.
- 17. Mordia A. Goat management practices among livestock owners in Chittorgarh district of Rajasthan [M.V.Sc. thesis]. Bikaner: College of Veterinary & Animal Science, Rajasthan University of Veterinary & Animal Sciences; 2017.
- 18. Rai B, Singh MK. Rearing practices of Jhakharana goat in farmers' flock. Indian J Small Ruminants. 2004;10(1):33-35.
- 19. Sabapara GP, Kharadi VB. Adoption of improved goat rearing practices in southern Gujarat. Indian J Small Ruminants. 2015;21(2):367-369.
- 20. Sabapara GP, Kharadi VB, Sorthiya LM. Prevalent feeding and breeding management practices of goats in Navsari district, Gujarat. Indo-Am J Agric Vet Sci. 2014;2(4):59-66.
- 21. Sahebrao DA, Pandey R, Neeraj, Satyanarayana SDV. Feeding management practices of the goat farming and

- their impact on the socio-economic status of goat farmers in Akola district, Maharashtra. Pharma Innov J. 2023;SP-12(12):689-693.
- 22. Sandhu S, Malik D, Kaswan S, Singh J, Singh Y. Feeding management practices adopted by goat farmers in southwest Punjab and their constraints. Int J Livest Res. 2018;8(5):271-279.
- 23. Singh S. Feeding and breeding practices of goat rearing in the Pratapgarh district of Rajasthan [M.Sc. Thesis]. Udaipur, Rajasthan: Rajasthan College of Agriculture, Maharana Pratap University of Agriculture & Technology; 2020.

How to Cite This Article

Verma LN, Meena AK. A comprehensive study on feeding practices adopted by Gujri goat farmers in Rajasthan. International Journal of Veterinary Sciences and Animal Husbandry. 2025;SP-10(9):31-36.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.