

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(8): 349-355 © 2025 VET

www.veterinarypaper.com

Received: 09-07-2025 Accepted: 11-08-2025

Parvez I Sindhi

Department of Veterinary Pathology College of veterinary science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, Gujarat, India

Sneha P Modh

Directorate of Animal Husbandry Agriculture, Department of Farmers Welfare and Co-operation, Government of Gujarat, Gujarat, India

Shweta P Khatri

Department of Gynaecology and Obstetrics, College of veterinary science and Animal Husbandry, Kamdhenu University, Dantiwada, Gujarat, India

Samir H Raval

Department of Veterinary Pathology College of veterinary science and Animal Husbandry, Kamdhenu University, Dantiwada, Guiarat, India

Rohit S Parmar

Department of Veterinary Pathology College of veterinary science and Animal Husbandry, Kamdhenu University, Dantiwada, Gujarat, India

Parth B Rathod

Department of Veterinary Pathology, College of veterinary science and Animal Husbandry, Kamdhenu University, Dantiwada, Gujarat, India

Ratn Deep Singh

Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Dantiwada, Gujarat, India

Jaynudin H Khorajiya

Department of Veterinary Pathology, College of veterinary science and Animal Husbandry, Kamdhenu University, Navsari, Gujarat, India

Jasmi G Patel

Department of Veterinary Pathology College of veterinary science and Animal Husbandry, Kamdhenu University, Dantiwada, Gujarat, India

Corresponding Author: Parvez I Sindhi

Department of Veterinary Pathology College of veterinary science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, Gujarat, India

Effect of *Citrus medica* Linn extract on ethylene glycol induced urolithiasis in streptozotocin-induced diabetic rats

Parvez I Sindhi, Sneha P Modh, Shweta P Khatri, Samir H Raval, Rohit S Parmar, Ratn Deep Singh, Parth B Rathod, Jaynudin H Khorajiya and Jasmi G Patel

Abstract

The present study evaluated the ameliorative effect of *Citrus medica* Linn. Extract on ethylene glycolinduced urolithiasis in streptozotocin (STZ)-induced diabetic rats. Eighty male Wistar rats were divided into eight groups (I-VIII, N=10). Diabetes was induced with a single intraperitoneal injection of STZ (60 mg/kg) in groups II, IV, VI, and VIII. Urolithiasis was induced in groups III, IV, VII, and VIII using 0.75% ethylene glycol and 1% ammonium chloride. *Citrus medica* Linn extract (200 mg/kg/day) was administered in groups VI, VII, and VIII. STZ-treated rats showed typical diabetic symptoms, significant weight loss, hyperglycaemia, altered haematology, serum biochemistry, and 40-50% mortality. Ethylene glycol exposure led to depression, lethargy, increased urea, creatinine, and renal calcium oxalate crystal deposition. However, it failed to improve hyperglycaemia, weight loss, haematological, or biochemical changes in diabetic rats. Thus, *Citrus medica* Linn. Extract showed potential in mitigating nephropathy caused by urolithiasis but not in reversing STZ-induced diabetic complications.

Keywords: Citrus medica Linn, streptozotocin (STZ), urolithiasis, diabetic, rats

Introduction

The World Health Organization (WHO) emphasizes the development of herbal and herbal medications to benefit people worldwide, increase the quality of the results, and reduce drug side effects. According to the organization, approximately 80% of individuals in industrialized countries rely on pharmaceuticals for their health needs (Barrett, 2003) [2].

Citrus medica Linn is a versatile medicinal agent with various therapeutic properties. Leaves have anthelmintic and estrogenic properties, while fruits have antimutagenic, anticancer, antimicrobial, analgesic, insulin secretagogue, antioxidant, and antiulcer properties. Seeds have antidiabetic, hypolipidemic, and estrogenic properties. Ripe fruits are used for various ailments, including urinary problems (Chhikara *et al.*, 2018) ^[4].

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by reduced insulin production, leading to impaired carbohydrate metabolism and hyperglycemia. Types include type 1, type 2, and gestational diabetes. The exact mechanism of type 2 DM is unclear, but it is believed to be due to increased fatty acid concentrations stimulating the serine kinase cascade. DM can cause serious complications like cardiovascular problems and urinary calculi. Factors contributing to DM include improper metabolism, nitrogen waste products, food habits, dehydration, and water usage (Williams *et al.*, 2016) [13].

As these challenges continue to affect humans, several animal models are constantly being produced to examine the pathogenic processes and therapeutic approaches. Among all, streptozotocin (STZ) is a drug that has been commonly used to induce diabetes in mouse and rodent experimental models. It was first reported to have a diabetogenic effect in 1963, and since then, numerous studies have been conducted using multiple combinations to induce diabetes. Research suggests that type 1 diabetes may be developed in animals using a single high-dose STZ injection, and few others use multiple doses. Type 2 diabetes can be induced using various standard techniques, such as STZ injection combined with nicotinamide administration.

A high-fat diet combined with streptozotocin induces type II diabetes due to lipotoxicity and insulin resistance in peripheral tissues.

Calcium oxalate (CaOx) urolithiasis induced by ethylene glycol (EG) in rats is frequently used to investigate the cause of kidney crystal deposition (Bano et al., 2018) [1]. For the purpose of studying kidney calcium oxalate crystal deposition, this drug has been used alone or in combination with other drugs, such as ammonium chloride. When rats are administered EG, they develop hyperoxaluria, CaOx crystalluria, and occasional deposition of CaOx crystals in the kidneys (Green et al., 2005) [5]. Ammonium chloride consumption increases urine acidification and reduces urinary citrate excretion, which may be responsible for increased CaOx crystal formation in the kidneys (Fan et al., 1999) [6]. Animal models that develop uroliths naturally and spontaneously are insufficiently utilized in the study of human stone disease. Improved collaboration among urologists, basic scientists, and veterinarians is required to further understand how stones form and to consider potential new preventive and therapeutic treatment options. Diabetes in animal models is not only an important field of research due to the many similarities with humans, but it can also play a key role in veterinary medicine and its progression in animals.

Research is needed to reduce diabetes mellitus suffering and complications while increasing cost-effectiveness. Domestic large animals are often neglected, and allopathic drugs have been used to treat urinary calculi. Medicinal plants are being studied for their antiurolithiatic and antidiabetic properties, but most are not scientifically documented. *Citrus medica* Linn may be effective in treating urolithiasis (Shah *et al.*, 2015) [11].

Materials and Methods

The guidelines of Committee for the Control and Supervision of Experiments on Animals (CCSEA), New Delhi, India, were followed when the experiment was conducted on laboratory animals. The Institutional Animal Ethics Committee (IAEC), College of Veterinary Science and Animal Husbandry, Sararkrushinagar, has given its approval to the current experimental protocol, No VET COLL/IAEC/2022/19/Protocol No 19.

Collection of Test Article and Preparation of Citrus medica Linn. (CM)Extract

Citrus medica Linn. (CM) were collected from surrounding region of Palanpur taluka of Banas kantha district Gujarat. The collected plant was identified and authenticated at the Department of Botany, Hemchandracharya North Gujarat University, Patan and Guiarat, Citrus medica Linn, Fruits were properly cleaned with distilled water, partially dried on paper towels, and then kept in an oven to finish drying. In a mixer grinder, it was reduced to a fine powder. Finally, powdered fruits material sieved through the kitchen strainer and fine powder was collected for extraction. The powder sample was packed in a thimble and kept in soxhlet apparatus. The solvent (methanol) was taken separately for the extraction and the powdered material was siphoned by 3 times. The whole apparatus was kept over a heating mantle and was heated continuously for 8 hours at boiling point of methanol (56 °C). The extract was concentrated to dryness and the residues were transferred to a sample bottle and were stored for present studies (Bioquest, 2023) [3]. The extract was made at start of the study and properly stored still used. Daily doses of extract were made.

Animals

The 80 Wistar rats were purchased from the Laboratory Animal Facility of Torrent Research Centre, GIDC, Bhat, Ahmedabad, Gujarat, India. Before being enrolled in the experiments, all the rats were subjected to a 15-day acclimatization period. The care and handling of animals was done in accordance with the standards set by the Committee for the Control and Supervision of Experiments on Animals (CCSEA), New Delhi, India.

Induction of diabetes in rats Citrate buffer preparation

In 800 mL of distilled water was mixed with 25.703 g of Sodium Citrate dihydrate in a suitable container and add 2.421 g of citric acid in the solution. Desired pH of 4.5-4.8 was adjusted by using HCL or NaOH and final volume was made 1 Litre by using distilled water (Bioquest, 2023) [3].

Streptozotocin (STZ) preparation

The streptozotocin (STZ) used in the present study was purchased from Sigma Aldrich (India). A single intraperitoneal injection of 60 mg/kg of streptozotocin (STZ) was given to each of total of 40 rats on day to induce diabetes after an overnight fast. The streptozotocin solution was prepared in 1 ml of 50 mM citrate buffer solution (pH 4.5) by dissolving 32.5 mg and then promptly injected into the peritoneum (Furman, 2015) [7] according to the weight of each animal, whereas control animals were injected intraperitoneallyonly with 50 mM citrate buffer solution (pH 4.5). After seven days of STZ injection, the rats were fasted overnight, blood samples were collected for glucose estimation. For the trial rats were considered diabetic whose fasting blood sugar levels exceeded 200 mg/dl.

Induction of urolithiasis in rats

Preparation ethylene glycol and ammonium chloride

The ethylene glycol and ammonium chloride are purchased from Sigma-Aldrich, Inc. Drinking water containing 0.75% (w/v) ethylene glycol was given to rats for 21 days, coupled with 1% (w/v) ammonium chloride during the first five days, in order to induce urolithiasis (Khan *et al.* 2016) [10].

Preparation of doses of Citrus medica Linn. (CM)

The dosage formulation was made by mixing distilled water and *Citrus medica* Linn extract to achieve the necessary concentration, and they were then stored at room temperature. The dose was prepared on a daily basis after each formulation was swirled with a magnetic stirrer until a homogenous suspension was achieved. Oral dosage of the formulation was 1ml per 100g of body weight.

The dose of the aqueous extracts of *Citrus medica* Linn used in present study was adopted from the study of El-Alfy *et al.* (2012) ^[5]. *Citrus medica* Linn was dissolved in distilled water daily and was administered orally with use of oro-gastric cannula to rats at 200 mg/ kg, BW (at 9.00-11.00 a.m. each day) for a 90 days.

Experimental design: (90 Day's)

Group	Induction of urolithiasis	Induction of diabetes	(CM) Dose	No of animals (Rats)	
I (Control)	-	-	0	10	
II (Streptozotocin Diabetic (STZD) Control)	-	Yes	0	10	
III (Ethylene glycol (EG) Control)	EG from 69th day of study onward	-	0	10	
IV (Streptozotocin Diabetic (STZD) + Ethylene glycol (EG) Control)	EG from 69th day of study onward	Yes	0	10	
V (Citrus medica Linn. Extract (CME)	-	-	200	10	
VI (STZD + CME)	-	Yes	200	10	
VII (EG + CME)	EG from 69th day of study onward	-	200	10	
VIII (STZD + EG + CME)	EG from 69th day of study onward	Yes	200	10	
Total		_	-	80	

Clinical observations

Throughout the course of the study, observations for morbidity and mortality were made twice every day. Clinical observation was documented once daily during the acclimatization period. Pre-dose and two hours after-dose clinical assessments were performed at least twice per day of dosing.

Body weights

The body weight of survived rats was recorded at day one of initiation of dosing and thereafter at weekly intervals throughout the study period. Based on the terminal body weight that was recorded prior to necropsy, relative organ weight was determined. All body weights on dosing days were recorded prior to dosing and used for dose volume determinations.

Blood Glucose

The fasting blood glucose rat for Group (I, II, IV, VI and VIII) were recorded on research days 1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, and 91. In present study, rats were fasted for 6 hr. prior to measured blood glucose.

Clinical pathology

The survived rats were fasted overnight prior to blood collection and necropsy. Blood was collected from all experimental groups on the 91th day of study from the retroorbital plexus with the help of a heparinised capillary tube in serum vial for clinical chemistry and in K3-EDTA for haematology. Haematological parameters viz., Haemoglobin estimation (Hb), Packed Cell Volume (PCV), Total Erythrocyte Count (TEC), Mean Corpuscular Volume (MCV), Mean Corpuscular Haemoglobin (MCH), Mean Corpuscular Haemoglobin Concentration (MCHC), Total Leucocyte Count (TLC) and Differential Leucocyte Counts (DLC) were analysed. Clinical chemistry parameters like Glucose, Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Alkaline Phosphatase (ALP), Gamma Glutamyl Transferase (GGT), Creatinine, Urea Nitrogen (BUN), Cholesterol, LDL (low-density lipoproteins), HDL (High-density lipoproteins), Triglycerides, Total Protein, Albumin, Calcium and Phosphate were analysed from sample collected on 91th day.

Statistical Analysis

The statistical analysis of data generated on various parameters were subjected to statistical analysis using one-way analysis of variance (ANOVA).

Results and Discussion

The result obtained from the present study have been described and discussed broadly under the following headings.

Symptomatology

All the rats were observed for development of clinical and behavioural symptoms throughout the experimental period of 90 days. The control rats of group I (GI) did not show any abnormal clinical signs or behaviours. However, STZ treated rats of Groups II (GII), IV (GIV), VI (GVI) and VIII (GVIII) polyuria, polydipsia and dehydration. Polyuria was appreciated by wetness of bedding material and polydipsia was appreciated by consumption of water from the bottom. Polyuria, polydipsia and dehydration were noted from 3rd day of study and consistently reported throughout the study periods in survived rats in GII, GIV, GVI and GVIII. Similarly, ethylene glycol treated rats (Group III (GIII), and group VII (GVII)) showed depression, lethargy and decreased feed intake towards end of study.

Mortality

All the rats were observed twice daily for mortality during experiment. In the present study, no mortality was noted in Group I (Control), III (EG control), V (CME) and VII (EG + CME). However, STZ treatment induced mortality in GII, GIV, GVI and GVIII. In Group II (STZD control) four rats (24,32,43, and 55 day of study), Group IV (STZD + EG control) five rats (16, 23, 24, 31, and 33 day of study), Group VI (STZD + CME)) five rats (10,16, 16, 24, and 26 day of study) and Group VIII (STZD + EG + CME) five rats (10,15, 20, 20, and 33 day of study) were found dead.

Body weight

The summary of the body weight of eight groups is presented in Table 1. In the present investigation, STZ treatment induced significant reduction in body weight in GII, GIV, GVI, and GVIII, while GIII, GV, and GVII body weights were comparable to control. Statistically significant reduction in body weights of STZ treated groups were noted from 4th weeks onwards and trends was continued until end of the study. In the present investigation loss of body weight in GVI (STZD + CME) or GVIII (STZD + EG + CME) was not ameliorated by CME treatment. For GIII (EG control), GV (CME), and GVII (EG + CME) there were no statistically significant difference in the body weight, when compared with control. In intergroup comparison, GI (control) to GV (CME)), GII (STZD control) to GVI (STZD + CME), GIII (EG control), to GVII (EG + CME)) and GIV (STZD + EG control) to GVIII (STZD + EG + CME)) there were not any significant changes found. Bodyweight data clearly indicated that CME unable to ameliorate loss of body weight caused STZ treatment.

Clinical pathology Haematology

The mean of the haematology data of eight groups is presented in Table 2. In the present study, RBC, Hb and PCV

values were decreased in STZ treated Group GII (STZD Control), GIV (STZD + EG Control), GVI (STZD + CME), GVIII (STZD + EG + CME), when compared with the control group. The RBC HB and PCV values of GIII (EG control). GIV (STZD + EG control) and GVII (EG + CME) were comparable to control. MCH value was decreased in GIII (EG control), GIV (STZD + EG control), GVI (STZD + CME) and GVII (EG + CME). In the present study, thrombocytopenia was noted in STZ treated GII (STZD Control), GIV (STZD + EG Control), GVI (STZD + CME), GVIII (STZD + EG + CME), when compared with the control group. While GIII (EG control) and GVII (EG + CME) showed thrombocytosis. Leucocytosis with absolute increased in neutrophils counts were noted in all groups (GII, GIII, GIV, GVI, GVII and GVIII) except GV when compared with the control group. In intergroup comparison, (Group GI (control) to GV (CME), GII (STZD control) to GVI (STZD + CME)), GIII (EG control), to GVII (EG + CME) and GIV (STZD + EG control) to GVIII (STZD + EG + CME)) there were no any significant changes found in haematological parameter. Inter comparison data clearly indicate that CME treatment could not protect or ameliorate streptozotocin and/or ethylene glycol induced abnormalities.

Fasting blood glucose

The summary of the Fasting blood glucose level data of four groups is presented in Table 3. Fasting blood glucose levels were monitored weekly for each of the four experimental GII (STZD Control), GIV (STZD + EG Control), GVI (STZD + CME), GVIII (STZD + EG + CME), with all diabetic rats had been fasted for 6 hours prior to analysis.

During the experimental period, a significant increase in glucose levels of blood taken from the caudal vein of rats was observed in GII (STZD Control), GIV (STZD + EG Control), GVI (STZD + CME), GVIII (STZD + EG + CME), when

compared to GI (Control). No treatment-related effects of *Citrus medica* Linn were observed.

Biochemistry

The summary of the clinical chemistry data of eight groups is presented in Table 4. In the present study, there was statistically significant increase in serum ALT, AST, ALP, Glucose, triglyceride, cholesterol and LDL level and significant reduction level of HDL in STZ treated GII (STZD control), GIV (STZD + EG control), GVI (STZD + CME) and GVIII (STZD + EG + CME) when it comparable with GI (control). However, no significant changes were found in GGT, TP, albumin, calcium, phosphorus, and magnesium when comparing with GI (control). In this study, there was a statistically significant increase in urea and creatinine levels in GIII (EG Control) and GVII (EG + CME) compared to GI (control). No significant changes were observed in ALT, AST, ALP, GGT, TP, albumin, triglyceride, cholesterol, glucose, calcium, phosphorus, magnesium, HDL, LDL when compared to GI (control). Additionally, no significant changes were observed in biochemistry parameters when comparing Group V (CME) to GI (control). In intergroup comparison, (Group GI (control) to GV (CME), GII (STZD control) to GVI (STZD + CME)), GIII (EG control), to GVII (EG + CME) and GIV (STZD + EG control) to GVIII (STZD + EG + CME)) there were no any significant changes found in clinical chemistry parameters. Inter comparison data clearly indicate that CME treatment could not protect or ameliorate streptozotocin and/or ethylene glycol induced abnormalities. However, when GIII (EG control) was compared with GVII (EG + CME) severity of azotaemia (urea and creatinine levels) was decreased. These findings indicate that CME treatment partially ameliorate azotaemia caused by EG treatment, however no effect on STZ induced clinical chemistry abnormalities.

Table 1: Weekly body weight (gm) (Mean \pm SD) in male rats

	Cuonn I	Cwoun II	Crown III	Crown IV	Crown V	Crown VI	Group VII	Crown VIII
Day	Group I (Control)	Group II (STZD Control)	Group III (EG Control)	Group IV (STZD + EG Control)	Group V (CME)	Group VI (STZD + CME)		Group VIII (STZD + EG + CME)
-	(/	529.68±41.934ª	528.66±78.392°	549.29±32.684°	525.61±77.677 ^a	536.14±.32.870°	538.40±52.494°	528.62 ± 34.581^{a}
0 Day								
	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)
7 Day		513.66±42.658 ^a	533.11±78.615 ^a	527.86±36.224ª	529.43±78.052 ^a	523.64±33.916 ^a	548.44±46.824a	0 - 017 ==00111
	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)
14 Day	565.10±43.676 ^b		540.44±79.558ab	512.19±38.064ab	533.60±78.707 ab	509.69±37.214ab		503.12±33.472ab
1 i Duy	(N=10)	(N=10)	(N=10)	(N=10)	(N=10)	(N=9)	(N=10)	(N=9)
21 Day	570.58±43.900°	484.58±41.881ab	542.98±80.172abc	486.65±39.852ab	538.98±78.426abc	497.97±42.633 ^{abc}	560.48±46.508bc	477.06±43.552°
21 Day	(N=10)	(N=10)	(N=10)	(N=9)	(N=7)	(N=10)	(N=10)	(N=6)
28 Day	574.06±43.352b	473.89 ± 43.072^a	547.51±79.454ab	476.06±35.510 ^b	542.89±79.091ab	476.64±48.712a	566.78±46.508b	463.19±49.366a
26 Day	(N=10)	(N=9)	(N=10)	(N=7)	(N=10)	(N=5)	(N=10)	(N=6)
25 D	574.72±48.670a	466.12±44.58ab	553.38±80.071bc	470.54±33.679ab	548.08±79.645bc	467.00±48.997ab	571.98±48.171a	446.57±46.335a
35 Day	(N=10)	(N=8)	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)
10 D	580.76±45.910b	454.28±43.579a	555.69±79.372b	549.04±30.955a	551.77±77.643b	461.64±48.498a	573.39±47.210b	434.35±43.436 ^a
42 Day	(N=10)	(N=8)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
40 D	583.26±45.448b	435.78±33.108 ^a	558.35±79.410 ^b	449.49±31.528a	556.01±78.517 ^b	455.74±47.541a	579.29±45.714b	430.79±42.781a
49 Day	(N=10)	(N=7)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
5 (D	584.88±46.530b	415.06±10.080a	559.31±76.922 ^b	442.04±32.300a	558.40±78.371b	450.63±46.589a	586.70±48.829b	426.23±41.843a
56 Day	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
63 Day	590.14±45.712b	408.82±9.933a	562.42±77.672 ^b	432.64±31623a	562.32±77.068b	446.87±45.894a	591.15±48.055b	422.79±41.293 ^a
os Day	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
70 D	592.55±46.223b	404.73±9.830a	565.85±78.368 ^b	429.40±31.472a	565.78±75.865 ^b	443.26±45.372a	595.15±47.826b	419.45±40.677a
70 Day	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
77 D	593.36±48.768b	400.01±9.635a	568.76±77.169b	424.49±31.153a	569.10±76.865b	440.00±44.537a	599.47±50.613b	416.15±40.064a
77 Day	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
0.4.D	592.53±47.358b	396.05±9.591a	571.14±76.997 ^b	420.14±30.841a	573.51±75.368b	436.40±43.869a	602.38±50.710b	412.88±39.134a
84 Day	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
01.D	594.27±45.477b	390.72±9.492ª	572.60±77.837b	414.51±29.835a	575.17±74.703 ^b	432.85±43.214a	607.10±51.354b	409.68±38.543ª
91 Day	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)

Table 2: Hematological parameters (Mean $\pm SD$) in male rats

Parameter	Unit	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VII
DDC	10 ⁶ /μL	7.57±0.186 ^a	6.89±0.511 ^a	8.09±0.768 ^a	7.10±0.156 ^a	7.64±0.368 ^a	7.05±0.202 ^a	7.77±0.483a	6.99±0.457 ^a
RBC	107μL	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
HGB	gm/dl	16.42±0.365a	14.65±0.911a	16.38±1.530 ^a	14.72±0.472a	16.65±0.616 ^a	14.55±0.245 ^a	16.34±0.998a	14.95±1.133 ^a
пов		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
НСТ	%	39.67±0.986a	36.00±0.678 ^a	40.11±3.521 ^a	36.08±1.299a	39.86±1.366a	36.06±0958a	38.79±2.453a	38.39±0.606 ^a
пст	70	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
MCV	fL	52.45±1.052a	52.54±4.759 ^a	49.63±1.575 ^a	50.84±1.140 ^a	52.20±1.052a	51.18±1.462 ^a	50.00±3.339a	55.20±4.594a
IVIC V	IL	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
MCH	ng	21.71±0.537a	21.29±0.465a	20.26±0.446 ^a	20.75±0.441a	21.80±0.549a	20.65±0.347 ^a	21.03±0.592a	21.40±0.475 ^a
WICH	pg	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
MCHC	g/dL	41.40±0.729 ^a	40.72±2.865a	40.83±0.665 ^a	40.81±0.668 ^a	41.76±0.411 ^a	40.36±0.682a	42.17 ± 2.032^a	38.98±3.448 ^a
MCHC		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
PLT	10³/μL	798.80±66.181a	512.56±76.854a	957.10±99.235 ^b	639.04±35.723a	827.80±168.636a	674.19±41.353a	1009.10±94.566a	648.63±56.030 ^a
ILI		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
WBC	$10^3/\mu L$	11.47±2.387 ^a	17.13±0.546 ^{bcd}	15.96±5.065bc	18.19±0.454 ^{cd}	13.52±2.705ab	17.63±0.841 ^{bcd}	20.67 ± 2.770^{d}	27.12±1.258e
WBC		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Neutrophils	$10^3/\mu L$	1.65±0.673 ^a	4.05±0.345 ^b	4.24±2.188 ^b	4.95±0.514 ^b	1.69±0.490a	4.18±0.260b	5.17 ± 0.854^{b}	6.73±0.636°
reditopinis		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Lymphocytes	10 ³ /uT	9.07±1.621a	12.34±0.688ab	10.95±4.295ab	12.36±0.230ab	11.19±2.385ab	12.60±0.990ab	14.62±1.930 ^b	19.35±1.013°
Lymphocytes	10 /μΕ	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Monocytes	10³/μL	0.54 ± 0.247^{a}	0.57±0.084ab	0.56 ± 0.176^{bc}	0.65±0.101abc	0.50 ± 0.134^{ab}	0.63±0.102 ^{abc}	0.66 ± 0.214^{cd}	0.76 ± 0.256^{d}
Monocytes	10 /μΕ	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Eosinophils	10 ³ /uI	0.19±0.121a	0.17±0.005 ^a	0.20 ± 0.084^{a}	0.22±0.077 ^a	0.14±0.027 ^a	0.21±0.085a	0.23±0.066a	0.27±0.013 ^b
Losinopinis	10 /μL	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Racophile	10³/μL	0.02 ± 0.048^{a}	0.00 ± 0.000^{a}	0.00 ± 0.000^{a}	0.00 ± 0.000^{a}	0.00 ± 0.000^{a}	0.00 ± 0.000^{a}	0.00 ± 0.000^{a}	0.00 ± 0.000^{a}
Basophils	10 /μL	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)

Non-significant (p>0.05)

Table 3: Fasting blood glucose (Mean $\pm SD$) in male rats

	Table of Tabling blood glacobe (Fleat 255) in male table										
Day	Group II (STZD Control)	Group IV (STZD + EG Control)	Group VI (STZD + CME)	Group VIII (STZD + EG + CME)							
0 Day	471.5 ± 88.052^{a}	479.80 ± 107.950^{a}	475.20±.99.516 ^a	473.90±88.906 ^a							
0 Day	(N=10)	(N=10)	(N=10)	(N=10)							
7 Day	480.60±88.677a	487.60±108.470a	483.50±98.743a	474.90±93.827a							
/ Day	(N=10)	(N=10)	(N=10)	(N=10)							
14 D	480.50±89.470a	492.20±110.967a	473.78±90.828a	461.11±92.931a							
14 Day	(N=10)	(N=10)	(N=9)	(N=9)							
21 D	475.90±87.754a	499.67±115.588 ^a	490.00±97.794a	467.17±86.038a							
21 Day	(N=10)	(N=9)	(N=10)	(N=6)							
20 D	473.89±83.156 ^a	480.43±121.264a	489.20±92.294a	476.83±74.717a							
28 Day	(N=9)	(N=7)	(N=5)	(N=6)							
25 Day	490.13±92.643a	445.33±101.944a	488.00±101.012a	491.60±69.364a							
35 Day	(N=8)	(N=6)	(N=5)	(N=5)							
42 D	486.00±78.316 ^a	416.60±75.761 ^a	4494.80±97.996a	490.40±80.869a							
42 Day	(N=8)	(N=5)	(N=5)	(N=5)							
49 Day	484.29±77.519 ^a	428.20±81.060a	492.00±100.027a	497.80±74.429a							
49 Day	(N=7)	(N=5)	(N=5)	(N=5)							
56 Day	481.67±60.165 ^a	431.20±81.625a	482.00±104.926a	492.20±64.414a							
56 Day	(N=6)	(N=5)	(N=5)	(N=5)							
(2 D	470.00±72.553a	431.20±72.144a	482.62±108.367a	492.20±67.821a							
63 Day	(N=6)	(N=5)	(N=5)	(N=5)							
70 Day	481.67±74.471 ^a	433.40±72.848a	491.40±105.070 ^a	502.20±75.284a							
70 Day	(N=6)	(N=5)	(N=5)	(N=5)							
77 Day	479.67±67.468 ^a	428.80±85.042a	492.00±101.634a	501.00±76.010 ^a							
// Day	(N=6)	(N=5)	(N=5)	(N=5)							
84 Day	488.17±61.934 ^a	4425.40±81.626a	486.60±103.018 ^a	498.60±68.175 ^a							
64 Day	(N=6)	(N=5)	(N=5)	(N=5)							
01 D	501.83±55.876 ^a	438.60±84.852a	482.40±109.212a	497.40±75.252a							
91 Day	(N=6)	(N=5)	(N=5)	(N=5)							

Table 4: Biochemical parameters (Mean \pm SD) in male rats

Parameter	Unit	Group I (Control)	Group II (STZD Control)	Group III (EG Control)	Group IV (STZD + EG Control)	Group V (CME)	Group VI (STZD + CME)	Group VII (EG + CME)	Group VIII (STZD + EG + CME)
Alanine Aminotransferase (ALT)	U/L	91.97±11.182a (N=10)	304.11±28.255° (N=6)	99.72±28.714 ^a (N=10)	312.15±40.297° (N=5)	93.40±5.725 ^a (N=10)	296.76±67.736° (N=5)	86.74±17.969 a (N=10)	238.57±8.931 ^b (N=5)
Aspartate Aminotransferase (AST)	U/L	(' - /	381.53±39.497 ^b (N=6)	(' - /	(' - /	(' /	(' - /	180.42±12.168° (N=10)	
Alkaline Phosphatase (ALP)	U/L	208.71±53.774a (N=10)	544.04±28.239 ^b (N=6)	182.14±39.728a (N=10)	534.30±32.967b (N=5)	212.32±51.069a (N=10)	528.28±124.555b (N=5)	196.46±46.474 ^a (N=10)	872.83±41.042° (N=5)
Gamma Glutamyl Transferase (GGT)	g/dL	0.50±0.527 ^a (N=10)	0.33±0.516 ^a (N=6)	0.50±0.527a (N=10)	0.60±0.548 ^a (N=5)	0.60±0.516 ^a (N=10)	0.60±0.548 ^a (N=5)	0.60±0.516 ^a (N=10)	0.60±0.548 ^a (N=5)
Total Protein	g/dL	7.02±0.230a	7.49±0.521a	7.30±0.663a	7.17±0.464a	7.22±0.239a	7.29±0.608a	7.11±0.233a	7.37±.230 ^a

		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Albumin	mg/dl	3.63±0.200a	3.43±0.190a	3.68±0.187a	3.52±0.375a	3.73±0.116a	3.51±0.108a	3.53±0.241a	3.50±0.258a
Albuillii	mg/ui	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Urea	mg/dl	14.30±2.720a	22.52±8.479b	52.91±9.073°	22.46±2.445 ^b	14.24±8.618a	21.91±5.946ab	39.20±8.696°	20.20±4.657ab
Olea	mg/ui	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Creatinine	/.11	0.82±0.207a	1.12±0.522ab	1.44±0.512°	1.33±0.132 ^b	0.69±0.049a	1.00±0.300b	0.98±0.220a	1.00±0.274b
Creatinine	mg/dl	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Triglyceride	mg/dl	81.11±14.025a	430.03±31.329b	80.94±14.097a	431.30±32.210b	86.85±18.024a	418.38±25.820b	82.62±20.594a	425.54±30.328b
Trigryceride	mg/ui	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Cholesterol	mg/dl	86.37±16.840a	153.59±11.190 ^b	88.37±13.404a	151.46±10.190b	83.33±9.977a	148.32±18.212 ^b	88.97±11.905a	147.00±12.916b
Cholesterol		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Glucose		91.73±16.168a	556.80±48.967°	107.81±18.305a	512.77±41.835bc	85.80±12.777a	509.37±22.727b	87.45±21.042a	499.38±31.064b
Glucose		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Calcium	mg/dl	10.86±0.587a	10.81±0.522a	10.41±0.549a	10.62±0.338a	10.65±0.428 ^a	10.66±0.406a	11.17±0.869a	10.58±0.396a
Calcium		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Dhaonhama	/.11	12.44±0.963a	12.85±0.986a	11.02 ±1.632a	12.71±0.792a	12.30±1.707 ^a	12.14±0.997a	11.97 ±1.044a	12.52±0.775a
Phosphorus	mg/dl	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
Magnasium		0.74±0.546a	4.62±0.563a	4.73±1.396a	4.61±0.536a	4.53±0.523a	4.45±0.134a	4.34±0.535a	4.23±0.281a
Magnesium		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
HDL	U/L	215.86±8.517°	189.60±9.799ab	216.83±16.655c	181.04±12.577a	217.91±13.800°	187.78±8.654ab	209.85±22.433bc	184.34±10.186a
HDL	U/L	(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)
LDI		27.09±2.445a	56.17±4.092°	27.41±3.707 ^a	53.18±3.180°	26.95±3.483a	52.12±6.575°	28.17±4.898a	49.00±6.703b
LDL		(N=10)	(N=6)	(N=10)	(N=5)	(N=10)	(N=5)	(N=10)	(N=5)

^{*} Significant (p<0.05)

Summary and Conclusion

In the present study, STZ induced diabetic rats of Groups II, IV, VI and VIII showed polyuria, polydipsia and dehydration. Ethylene glycol treated rats Group III, and group VII showed depression, lethargy and decreased feed intake towards end of study. Streptozotocin, at the dose rate of 60 mg/kg body weight, induced marked hyperglycemia in Groups II (STZD control), IV (STZD + EG control), VI (STZD + CME), and VIII (STZD + EG + CME) rats and 40 to 50% mortality was observed in Groups II, IV, VI and VIII diabetic rats. In the present investigation, STZ induced significant reduction in body weight in Groups II (STZD control), IV (STZD + EG control), VI (STZD + CME), and VIII (STZD + EG + CME) rats were comparable to control. Group III (EG control), V (CME), and VII (EG + CME) rats showed no statistically significant difference in the body weight, when compared with control. Haematology parameters of Groups II (STZD control), IV (STZD + EG control), VI (STZD + CME), and VIII (STZD + EG + CME) showed anemia, neutrophiliac leukocytosis and thrombocytopenia. Serum biochemical parameters were statistically significant increased for serum ALT, AST, ALP, glucose, triglyceride, cholesterol and LDL cholesterol level, while significantly decreased HDL cholesterol level.

From the present study, following conclusions are drawn when *Citrus medica* Linn extract given in ethylene glycol induced urolithiasis in streptozotocin-induced diabetic rats

- Streptozotocin, at the dose rate of 60 mg/kg body weight, induced marked hyperglycemia in Groups II (STZD control), IV (STZD + EG control), VI (STZD + CME), and VIII (STZD + EG + CME) rats and 40 to 50% mortality.
- Citrus medica Linn extract treatment (@ 200 mg/kg, BW) did not ameliorate abnormalities of STZ induced weight loss, haematological parameters, clinical chemistry parameters and histopathological alterations in groups VI (STZD + CME), and VIII (STZD + EG+ CME).

Conflict of Interest: Not available

Financial Support: Not available

Reference

- Bano H, Jahan N, Makbul SAA, Kumar BN, Husain S, Sayed A. Effect of *Piper cubeba* L. fruit on ethylene glycol and ammonium chloride induced urolithiasis in male Sprague Dawley rats. Integr Med Res. 2018;7(4):358-65. DOI: 10.1016/j.imr.2018.06.005
- 2. Barrett B. Medicinal properties of *Echinacea*: A critical review. Phytomedicine. 2003;10(1):66-86. DOI: 10.1078/094471103321648692
- 3. Bioquest. Quest CalculateTM citrate buffer (pH 3.0 to 6.2) preparation and recipe. AAT Bioquest; 2023. Available from: https://www.aatbio.com/resources/buffer-preparations-and-recipes/citrate-buffer-ph-3-to-6-2
- Chhikara Bawari S, Sah AN, Gupta P, Zengin G, Tewari D. Himalayan *Citrus jambhiri* juice reduced renal crystallization in nephrolithiasis by possible inhibition of glycolate oxidase and matrix metalloproteinases. J Ethnopharmacol. 2023;306(4):116157. DOI: 10.1016/j.jep.2023.116157
- El-Alfy TS, Hetta MH, Yassin NZ, Rahman RFA, Kadry EM. Estrogenic activity of *Citrus medica* L. leaves growing in Egypt. J Appl Pharm Sci. 2012;2(8):180-185. DOI: 10.7324/JAPS.2012.2831
- 6. Fan J, Glass MA, Chandhoke PS. Impact of ammonium chloride administration on a rat ethylene glycol urolithiasis model. Scanning Microsc. 1999;13(2-3):299-306. DOI: 10.1016/S0022-5347(05)68922-7
- 7. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(1):5-47. DOI: 10.1002/0471141755.ph0547s70
- 8. Green ML, Hatch M, Freel RW. Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol. 2005;289(3):F536-543. DOI: 10.1152/ajprenal.00025.2005
- 9. World Health Organization (WHO). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: Report of a WHO/IDF consultation. Geneva: WHO; 2006. ISBN: 9789241594936.
- 10. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Tiselius HG. Kidney stones. Nat Rev Dis Primers. 2016;2(1):1-23. DOI: 10.1038/nrdp.2016.8
- 11. Shah AP, Patel S, Patel K, Gandhi T. Effect of *Citrus medica* Linn in urolithiasis induced by ethylene glycol

- model. Iran J Pharmacol Ther. 2015;13(1):35-40. Available from: http://ijpt.iums.ac.ir/article-1-266-en.html
- 12. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185-200. DOI: 10.7150/ijms.10001
- 13. Williams RS, Kozan P, Samocha-Bonet D. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans. Biochimie. 2016;124:171-177. DOI: 10.1016/j.biochi.2015.09.012

How to Cite This Article

Sindhi PI, Modh SP, Khatri SP, Raval SH, Parmar RS, Sinh RD, *et al.* Effect of *Citrus medica* Linn extract on ethylene glycol induced urolithiasis in streptozotocin-induced diabetic rats. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(8):349-355.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.