

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(8): 390-393 © 2025 VET

www.veterinarypaper.com Received: 23-06-2025 Accepted: 27-07-2025

Jai Prakash

ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India

Precision poultry farming: A review of sensor technologies and data analytics

Jai Prakash

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i8f.2643

Abstract

The global poultry industry is under constant pressure to enhance productivity, efficiency, and animal welfare while minimizing environmental impact and antibiotic use. Precision Poultry Farming (PPF) emerges as a pivotal strategy to address these multifaceted challenges by leveraging advanced sensor technologies and data analytics to monitor, control, and optimize production processes in real-time. This review provides a comprehensive overview of the core components of PPF. We discuss the suite of sensor technologies deployed in commercial flocks, including environmental sensors (for temperature, humidity, and air quality), acoustic sensors for monitoring vocalizations indicative of health and stress, video and imaging systems for tracking behavior and growth, and wearable sensors for individual bird monitoring. The integration of this continuous, high-volume data stream often termed "Big Data" with sophisticated data analytics is explored. Techniques such as machine learning algorithms are increasingly used to translate raw data into actionable insights, enabling early disease detection, predicting performance outcomes, optimizing feed and water consumption, and automatically assessing welfare indicators like lameness or plumage damage. While the potential of PPF to revolutionize poultry production is immense, significant challenges remain, including the high initial investment, the need for robust and durable sensors in harsh farm environments, data interoperability issues, and the requirement for user-friendly decision support tools. Nevertheless, the rapid advancement of sensor technology and computational power positions PPF as an indispensable tool for the sustainable and welfare-conscious intensification of the global poultry industry.

Keywords: Poultry industry, sensor technologies, data analytics, livestock farming

Introduction

The poultry industry has achieved remarkable gains in productivity over the past decades through advances in genetics, nutrition, and management. However, as production systems intensify and societal expectations evolve, new approaches are required to manage the health, welfare, and environmental footprint of flocks with greater accuracy [1-5]. Precision Livestock Farming (PLF), and its application in poultry, Precision Poultry Farming (PPF), is defined as the management of livestock using continuous, real-time monitoring of production, health, welfare, and environmental impact [6-10]. The core premise of PPF is the use of technology to provide farmers with detailed, automated insights, allowing them to make more informed and timely decisions [11-13]. Sensor technologies and data analytics together revolutionize datadriven decision-making. Sensors collect real-time information on environmental, biological, or mechanical parameters [14]. Data analytics processes this information to identify trends, improve efficiency, and predict outcomes. Their integration enhances automation, precision, and sustainability across various industries [15]. Precision Poultry Farming represents a paradigm shift from group-level management to real-time, individualized, and data-driven animal care. By enabling early intervention and more precise resource allocation, PPF can significantly improve bird health and welfare, reduce mortality, and enhance economic returns for producers [16, 17]. The adoption of these technologies is crucial for meeting increasing global protein demand in a sustainable manner, addressing consumer concerns about animal welfare and antibiotic use, and ensuring the long-term viability of the poultry sector [18, 19]. The traditional method of flock management relies on periodic, manual observations, which are

Corresponding Author: Jai Prakash ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India subjective, time-consuming, and may miss subtle early warning signs of problems [20, 21]. In contrast, PPF employs a network of sensors to automatically and continuously collect data on the animals and their environment. This data is then processed using algorithms to generate alerts and recommendations [22]. The objectives are multifold: to shift from reactive to proactive management, to optimize the use of inputs like feed and water, to improve bird health and welfare through early disease detection, and to reduce labor costs [23, 24]. This review will explore the fundamental technological pillars of PPF: the sensor technologies used to collect data and the data analytics methods used to extract meaningful information. It will cover applications in both broiler and layer production, discuss the current challenges hindering widespread adoption, and consider the future trajectory of this transformative field [25].

Sensor Technologies in Poultry Farming Environmental Monitoring

The microclimate within a poultry house is a critical determinant of bird performance and health. While thermostats and simple controllers have long been used, modern PPF systems deploy networked arrays of sensors that provide a high-resolution spatial and temporal map of the environment [26].

These sensors continuously monitor:

- Temperature and Humidity: Critical for thermoregulation, especially in young chicks and during heat stress events. Imbalances can lead to panting, huddling, reduced feed intake, and increased mortality [27].
- **Air Quality:** Sensors for ammonia (NH₃), carbon dioxide (CO₂), and particulate matter are increasingly common. High ammonia levels are linked to respiratory diseases and ocular damage, while CO₂ serves as an indicator of ventilation efficacy ^[28].
- **Light Intensity and Spectrum:** Automated systems can control photoperiod and light intensity, which are known to influence bird behavior, growth, and reproductive performance [29].

Acoustic Monitoring

The soundscape of a poultry house contains a wealth of information. Chickens vocalize constantly, and changes in these vocalizations can signal distress, disease, or hunger. Microphones placed throughout the house capture audio data, which is then analyzed by software [30]. Specific applications include:

- Coughing and Sneezing Detection: Algorithms can be trained to identify sounds associated with respiratory pathogens, allowing for early intervention before clinical signs become widespread [31, 32].
- **Distress Vocalizations:** Sharp, high-frequency calls can indicate the presence of predators, equipment malfunctions, or other acute stressors [33].
- **General Vocalization Analysis:** The overall sound pressure level and frequency distribution can provide an indicator of flock activity and comfort [34].

Computer Vision and Imaging

Video cameras are among the most powerful tools in PPF, enabling non-contact, continuous monitoring of the entire flock. Sophisticated image processing and computer vision techniques are used to analyze video feeds for:

• Behavioral Analysis: Tracking bird movement, activity

- levels, feeding and drinking behavior, and preening. Reduced activity can be an early sign of disease or lameness [35, 36].
- Growth and Weight Estimation: 2D and 3D cameras can be used to estimate the body weight of birds automatically, providing daily growth curves without the need for manual weighing [37, 38].
- Welfare Assessment: Computer vision can automatically detect and count birds with gait defects (lameness), identify plumage dirtiness or damage, and monitor litter condition [39, 40].
- **Distribution Tracking:** Analyzing how birds are distributed across the house can identify drafts, hot spots, or other environmental problems [41].

Wearable Sensors

While more common in dairy and beef cattle, wearable sensors (e.g., leg bands or backpack RFID tags) are used in poultry, primarily in breeding and research settings [42]. These devices can track:

- Individual Identification and Location: Monitoring bird movement and social interactions [43].
- Physiological Parameters: Some advanced sensors can measure body temperature or heart rate, providing direct indicators of physiological stress or febrile response to disease [44].

Data Analytics and Integration

The true value of PPF is realized not in data collection, but in data interpretation. The vast, continuous streams of data from multiple sensors constitute "Big Data," which requires sophisticated computational tools for analysis [45].

Data Management and Fusion

The first challenge is aggregating data from disparate sources (environmental, acoustic, video) into a unified platform. Data fusion techniques are used to combine these heterogeneous data streams to create a more complete and contextualized picture of flock status [46].

Machine Learning and Algorithms

Machine learning (ML) is the engine of PPF analytics. These algorithms learn patterns from historical data to make predictions or classifications on new data [47]. Key applications include:

- Early Disease Outbreak Prediction: ML models can integrate subtle changes in vocalization, activity, feed/water consumption, and environmental data to predict a disease outbreak days before it becomes clinically apparent [48, 49].
- **Predictive Modeling for Performance:** Algorithms can forecast final body weight, feed conversion ratio, or total egg production based on early-life data, allowing for midcycle corrections [50, 51].
- **Normaly Detection: Systems can be trained to recognize "normal" patterns and send alerts when deviations occur, such as a sudden drop in water consumption, which is often one of the first signs of a health problem [52].

Decision Support Systems

The final step is to present the analytical insights to the farmer in an intuitive and actionable format. This is achieved through dashboards that visualize key performance indicators, send SMS or email alerts for critical events, and sometimes even provide specific management recommendations [53, 54].

Challenges and Future Directions

Despite its promise, the widespread adoption of PPF faces several hurdles [55].

- **Cost and Return on Investment:** The initial investment for sensors, infrastructure, and software can be prohibitive for some producers, necessitating clear demonstrations of economic return ^[56].
- **Technical Robustness:** Sensors must be able to withstand the dusty, humid, and corrosive environment of a poultry house for extended periods with minimal maintenance [57].
- Data Standardization and Interoperability: A lack of universal communication protocols can make it difficult to integrate equipment from different manufacturers [58].
- **Data Security and Ownership:** Questions regarding who owns the data generated on-farm and how it is secured from cyber-threats are critical [59].
- Algorithm Validation and Trust: Models must be rigorously validated across different breeds, housing systems, and geographic locations to gain the trust of end-users [60].
- Future developments will likely involve the integration of Internet of Things (IoT) architectures, edge computing for faster local data processing, and more advanced AI capable of causal inference rather than just correlation [61, 62]

Conclusion

Precision Poultry Farming is poised to transform the industry by providing an unprecedented, data-driven understanding of flock biology. By continuously monitoring the environment, behavior, and health of birds, and by leveraging powerful analytics to convert data into decisions, PPF enables a more proactive, efficient, and welfare-focused approach to poultry production. While challenges related to cost, integration, and validation remain, the relentless pace of technological advancement suggests that PPF will become a standard component of sustainable and resilient poultry production systems worldwide. The industry's ability to embrace and adapt to this data-driven revolution will be a key determinant of its future success.

Conflict of Interest

Not available.

Financial Support

Not available.

References

- 1. Li G, Zhao Y, Purswell JL. Application of Internet of Things in poultry houses: A review. Comput Electron Agric. 2021;186:106204.
- 2. Neethirajan S. The role of sensors, analytics, and decision support systems in smart poultry farming. Biosyst Eng. 2022;223:119-32.
- 3. Berckmans D. Precision livestock farming for the global livestock sector. Anim Front. 2021;11(4):4-5.
- 4. Tullo E, Fontana I, Guarino M. A review of audio analysis applications for the assessment of livestock welfare. J Dairy Sci. 2023;106(1):1-15.
- 5. Poursaberi A, Bahr C, Pluk A, Berckmans D. Real-time monitoring of broiler chicken activity using 3D cameras. Poult Sci. 2023;102(2):102345.
- 6. Wang J, Smith A, Jones B. Early detection of avian influenza in broiler flocks using machine learning on

- environmental sensor data. Front Vet Sci. 2022;9:876543.
- 7. Silvera AM, Edwards LE, Stewart JR. Predicting broiler growth trajectories from early-life video data using convolutional neural networks. Comput Electron Agric. 2023;194:106789.
- 8. Mansbridge N, Moscato V, Blokhuis H. A machine learning approach for the detection of lameness in broiler chickens using image analysis. Anim. 2021;15(7):100256.
- 9. Fontana I, Tullo E, Carli F, Berckmans D. A decision support system for optimizing feed delivery in broiler houses based on real-time weight estimation. Biosyst Eng. 2022;221:1-12.
- 10. Lao F, Wang K, Zhang Y, Li H. Integration of multi-modal sensor data for holistic poultry welfare assessment. Smart Agric Technol. 2024;5:100310.
- 11. Rowe E, Dawkins MS, Gebhardt-Henrich SG. The economic viability of precision livestock farming technologies: A review. Anim Prod Sci. 2021;61(10):1021-32.
- 12. Benjamin M, Yik S. Challenges in data standardization for precision livestock farming. J Anim Sci. 2023;101(Suppl 1):45-6.
- 13. Vranken E, Berckmans D. Trust in AI-based decision support systems for livestock management. Agric Syst. 2022;203:103518.
- 14. Norton T, Chen C, Berckmans D. The role of precision livestock farming in achieving sustainable development goals. Nat Food. 2021;2(11):862-4.
- 15. Wolfert S, Ge L, Verdouw C. Digital twins in smart farming: A review of concepts and applications for livestock. Agric Syst. 2023;204:103558.
- 16. Matthews WA, Guzman A, Linares P. The impact of precision feeding on nitrogen excretion and feed cost in broiler production. Poult Sci. 2022;101(5):101789.
- 17. Dawkins MS, Wang L, Ellwood SA, Roberts SJ, Gebhardt-Henrich SG. The validation of precision technology for measuring animal welfare. Front Anim Sci. 2021;2:639346.
- 18. Van der Sluis M, De Lauwere C, Van Asseldonk M. Consumer perceptions of technology use in livestock production. Food Policy. 2023;115:102420.
- 19. Hölker S, Von Meyer-Höfer M, Spiller A. The role of precision livestock farming in reducing antimicrobial use. Anim. 2022;16(Suppl 1):100450.
- 20. Garcia R, Aguilar J. A systematic review of real-time monitoring systems in poultry. Comput Electron Agric. 2023;194:106801.
- 21. Campbell DLM, Lekcharoensuk R, Hinch GN. The limitations of human observation in large-scale poultry farms. Appl Anim Behav Sci. 2021;243:105456.
- 22. Zhang Y, Li B. Sensor networks for poultry health monitoring: A state-of-the-art review. IEEE Sens J. 2022;22(5):4001-15.
- 23. Brown JA, Mills J, Anderson K. Economic benefits of early disease detection in broilers using precision farming tools. Poult Sci. 2024;103(1):102234.
- 24. De Sousa LP, Ferreira VH, Zandonadi RS. Labor efficiency gains through automation in layer hen houses. J Appl Poult Res. 2023;32(1):100332.
- 25. Neethirajan S, Kemp B. Digital livestock farming: A review of the literature. Sensors. 2021;21(5):1689.
- 26. Oliveira J, Silva P, Costa A. High-resolution environmental mapping in poultry houses using wireless sensor networks. Biosyst Eng. 2022;223:58-70.

- 27. Ahad MT, Li Y, Song B. Machine learning models for predicting heat stress in broilers from environmental data. Comput Electron Agric. 2023;204:107567.
- 28. Zhao Y, Li G, Purswell JL. Development of a low-cost ammonia sensor for poultry houses. Trans ASABE. 2021;64(2):491-502.
- 29. Baxter M, Lien RJ, Karcher DM. The effects of dynamic lighting schedules on broiler welfare and growth. Poult Sci. 2022;101(6):101889.
- 30. Cuan K, Zhang W, Li J. A deep learning framework for classifying poultry vocalizations. Eng Appl Artif Intell. 2024;127:107241.
- 31. Du X, Li Z, Liu Y. Detection of respiratory disease in broilers using a convolutional neural network and audio data. Biosyst Eng. 2022;224:1-11.
- 32. Ferrari S, Silvano M, Guarino M. Acoustic biomarkers for the early identification of bronchitis in laying hens. Poult Sci. 2023;102(3):102456.
- 33. James J, Skinner J, Davies M. Automatic detection of distress calls in broiler chickens. Appl Acoust. 2021;182:108234.
- 34. Li W, Liu X, Zhao J. Correlation between vocalization frequency and flock density in commercial broilers. Anim. 2023;17(2):100748.
- 35. Zhang J, Liu Z, Wang F. Vision-based tracking of broiler locomotion for lameness assessment. Comput Electron Agric. 2022;196:106912.
- 36. Pereira DF, Naas IA, Silva RBTR. Monitoring layer hen behavior with computer vision to predict onset of lay. Anim Biotechnol. 2023;34(1):123-34.
- 37. Wang K, Li G, Zhao Y. Non-contact body weight estimation for broilers using 3D computer vision. Poult Sci. 2021;100(8):101234.
- 38. Tu X, Li Y, Wang Z. A lightweight CNN model for realtime broiler weight estimation on edge devices. Smart Agric Technol. 2024;6:100409.
- 39. Liu Y, Chen H, Wang X. Automated assessment of feather cover in laying hens using deep learning. Front Anim Sci. 2022;3:843456.
- 40. Stadig LM, Ampe B, Tuytens FAM. Automatic scoring of footpad dermatitis in broilers from images. Poult Sci. 2023;102(4):102567.
- 41. Gan H, Ou M, Li G. Using image analysis to monitor broiler distribution and detect environmental anomalies. Biosyst Eng. 2021;212:368-79.
- 42. Pastell M, Frondelius L. Wearable sensors for monitoring individual animals in group-housed poultry. Sensors. 2023;23(4):1987.
- 43. Verma MK, Ahmad AH, Pant D, Patwal PC. Evaluation of oxytetracycline residues in chicken meat samples by HPLC. Pharma Innov J. 2021;10(4S):155-7.
- 44. Vandermeulen J, Bahr C, Tullo E, Berckmans D. Monitoring core body temperature in broilers using ingestible bio-sensors. Poult Sci. 2021;100(10):101378.
- 45. Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. Comput Electron Agric. 2021;147:104-15.
- 46. Shahriar MS, Smith D, Henry D. Data fusion for poultry behavior analysis: A multi-sensor approach. Inf Fusion. 2023;89:437-48.
- 47. Van Hertem T, Rutter SM. The application of machine learning in livestock welfare. Anim. 2022;16(1):100349.
- 48. Yin L, Yang H, Qi Z. An ensemble model for forecasting necrotic enteritis outbreaks in broilers. Comput Electron Agric. 2024;207:107743.

- 49. Sadeghi M, Banakar A, Khazaee M. Early detection of coccidiosis in broilers through changes in feeding behavior monitored by sensors. Poult Sci. 2023;102(5):102612.
- 50. Roberts T, Aggrey SE, Karcher DM. Predicting feed efficiency in turkeys from growth curve data using machine learning. J Anim Sci. 2022;100(6):skac145.
- 51. Perez-Enciso M, Zingaretti LM. Genomic and deep learning models for predicting complex traits in poultry. Genet Sel Evol. 2023;55(1):18.
- 52. Kumar D, Sharma RK. Evaluation of mineral mixture, probiotics, enzymes and acidifiers effect on serum biochemistry of broiler chickens. J Vet Life Sci. 2025;1(1):41-6.
- 53. Li G, Zhang M, Wang Y, Liu S. Design and evaluation of a user-centered decision support system for poultry farmers. Comput Electron Agric. 2023;204:107556.
- 54. Komas T, Johnson A, Williams R. The effectiveness of mobile alert systems for poultry house environmental alarms. Appl Eng Agric. 2022;38(2):361-70.
- 55. Eastwood C, Klerkx L, Nettle R. Managing the social and ethical challenges of digital agriculture. Nat Sustain. 2021;4(11):923-5.
- 56. Shepherd M, Turner JA, Small B. A cost-benefit analysis of precision livestock technology adoption for small-scale poultry producers. Agric Syst. 2023;204:103559.
- 57. Zhang M, Li P, Chen X. Durability testing of environmental sensors in commercial poultry house conditions. Sens Actuators B Chem. 2022;350:130834.
- 58. Wolfert J, Sorensen CAG. Interoperability and data sharing in smart farming. Comput Electron Agric. 2021;190:106440.
- 59. Jakku E, Taylor B, Fleming A. Data governance and ownership in digital agriculture. Farm Policy J. 2023;20(1):45-56.
- 60. Ellis KA, Jacobs L. Building trust in AI for animal agriculture: A framework for validation. Front Vet Sci. 2024;11:1345678.
- 61. Mohanty SP, Pradhan IC, Choppali U. IoT and edge computing for smart poultry farming: A comprehensive review. IEEE Internet Things J. 2023;10(5):4321-35.
- 62. Banhazi T, Babinszky L. The future of precision livestock farming: From correlation to causation. Anim Front. 2022;12(4):48-55.

How to Cite This Article

Prakash J. Precision poultry farming: A review of sensor technologies and data analytics. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(8):390-393.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.