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Abstract 

In recent years, genome-wide association studies (GWAS) have become a powerful approach for 

investigating the genetic underpinnings of complex phenotypic traits. In contrast to Mendelian disorders, 

which result from a single variant, quantitative traits are shaped by numerous genetic variants in 

interaction with environmental influences. A genome-wide association study (GWAS) is a method that 

entails thorough scanning of genetic markers throughout an individual's complete genome to identify 

those linked to specific traits. Advances in high-throughput sequencing technologies have enabled the 

detection of genomic regions, QTLs, and genes that account for these associations and their impact on the 

phenotype in question. These advancements have significantly enhanced the understanding of genetic 

mechanisms underlying complex traits, driving progress in domestic animal breeding and genetics 

research. 
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1. Introduction  

Quantitative or polygenic traits are governed by numerous genes in conjunction with 

environmental factors. The majority of economically important traits in livestock breeding fall 

into this category, driving substantial efforts to study them for instance, to predict breeding 

values for selection candidates or to locate the responsible genes or chromosomal regions. 

During the 1990s, quantitative trait locus (QTL) mapping relied mainly on microsatellite 

markers (Lipkin et al., 1998) [32]. Nowadays, whole-genome sequencing technologies facilitate 

the detection of genetic variations, providing a thorough insight into an organism's genetic 

composition. Genome-wide association studies (GWAS) leverage these variations across the 

entire genome, together with phenotypic data, to pinpoint genomic regions genuinely linked to 

the trait of interest (Stranger et al., 2011) [57]. As compared to traditional QTL mapping 

strategies, GWAS covers the major advantages both in the power to detect causal variants with 

modest effects and indicating the narrower genomic regions that harbor causal variants (Zhang 

et al., 2012) [70]. Compared to conventional QTL mapping approaches, GWAS offers key 

advantages in both detecting causal variants with moderate effects and pinpointing narrower 

genomic regions containing those variants (Ikram et al., 2010) [22].  

The basic principle of GWAS relies on the assumption that a strong association between the 

genetic variants and the economic trait of interest can be detected because the SNPs are in 

linkage disequilibrium (LD) with the QTL (Korte and Farlow, 2013) [25]. Zhang et al. (2012) 
[70] has stated that the high density of SNP marker chips used in GWAS is extremely effective 

in the identification of strong candidate regions harbouring casual mutation through Linkage 

Disequilibrium. With advances in molecular genetics and reduced genotyping costs, GWAS 

has become practical across most livestock species. The availability of commercial SNP chips 

such as those for cattle (50,000 SNPs: Illumina BovineSNP50 BeadChip; 777K HD), dogs 

(22,362 SNPs: Illumina CanineSNP20 BeadChip), sheep (56,000 SNPs), pigs (60,000 SNPs: 

Illumina PorcineSNP60 BeadChip), horses (54,602 SNPs: Illumina EquineSNP50 BeadChip), 

and chickens (60,000 SNPs: Illumina ChickenSNP60 BeadChip) has greatly accelerated 
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genome-wide association studies in recent years (Zhang et al., 
2012) [70].  
 

GWAS in Identifying Novel Variant-Trait Associations 
GWAS have successfully pinpointed numerous loci 
associated with a wide array of complex traits in livestock, 
such as milk yield, fat and protein content, somatic cell count, 
growth rate, meat quality and yield, sensory panel scores, 
calving ease, and egg production (Sharma et al., 2015) [54]. 
Usually, variations in breed-specific genetic architectures, 
combined with the polygenic basis of complex traits, lead to 
the identification of distinct genomic regions and genes linked 
to the same trait across different breeds of the same species. 
(Ma and Zhou, 2021) [37]. GWAS has proven to be an 
effective approach for identifying genes linked to diverse 
phenotypes and for clarifying the underlying mechanisms of 
complex traits (Table 1). In cattle, GWAS has identified novel 
SNPs associated with milk yield, milk fat content, milk fat 
composition, milk protein composition, body conformation 
traits (Yu et al., 2023) [67], reproductive traits (Gangwar et al., 
2025) [15]. In goat and sheep, GWAS has revealed novel loci 
and genes for litter size (Mahmoudi et al., 2022) [40], body 
conformation traits (Moaeen-ud-Din et al., 2022) [43], and feed 
efficiency traits (Zhang et al., 2025). In pigs, variants linked 
to growth rate, feed efficiency, intramuscular fat, meat 
quality, and reproductive traits have been identified with the 
aid of GWAS (Lan et al., 2023) [26]. Likewise, in poultry 
various workers have identified loci associated with various 
economic traits including growth traits, body size traits, egg 
production traits, eggshell quality, and disease resistance, 
such as resistance to Marek’s disease. 
 

GWAS can lead to the discovery of novel biological 

pathways and mechanisms 
GWAS loci frequently highlight genes with unknown 
functions or those not previously suspected to be involved 
(Hirschhorn, 2009) [18], and experimental follow-up of these 
loci can uncover novel biological mechanisms underlying 
disease (Visscher et al., 2017) [61]. Palombo et al. (2018) [48] 
employed a gene-centric approach and pathway meta-
analysis, identifying not only established genes linked to 
quantitative trait loci for milk fatty acid components-such as 
FASN, SCD, and DGAT1-but also additional significant 
candidate genes, including those with functional roles in lipid 
metabolism pathways (Table 2). 
 
GWAS are important to investigate low-frequency and 

rare variants 
Currently, most GWAS are performed using data obtained by 
SNP arrays. Originally designed to capture common genetic 
variation, genome-wide SNP arrays have evolved 
significantly to include higher variant density and a broader 
spectrum of allele frequencies (Table 3). Studies using 
exome-focused custom arrays have successfully identified 
rare and low-frequency coding variants associated with 
various complex traits, such as blood lipid levels, 
hematological parameters, blood pressure, height, BMI, and 
type 2 diabetes (T2DM), (Tam et al., 2019) [59]. 
 

GWAS can study genetic variants other than single-

nucleotide variants (SNVs) 
GWAS are mainly designed to assess single nucleotide 
variants (SNVs) for associations with complex diseases and 
traits. Nevertheless, they can also detect other types of genetic 
variants that influence disease susceptibility. For example, 
GWAS have associated rare (Bochukova et al., 2010) [3] and 

common copy number variants (D′ Angelo, and Koiffmann, 
2012) [8] with BMI and obesity, among several other common 
traits and diseases (Table 4).  
 

Limitations of GWAS 

GWAS explain only a modest fraction of the missing 

heritability 
GWAS have uncovered an unprecedented array of genetic 
variants linked to common diseases and traits, yet these 
variants explain only a modest fraction of the estimated 
heritability for most complex traits (Manolio et al., 2009) [41]. 
Several explanations for the missing heritability have been 
suggested (Eichler et al., 2010) [12]. One likely reason is that 
SNPs with modest effects go undetected because they fail to 
meet the strict significance threshold. 
 

GWAS do not necessarily pinpoint causal variants and 

genes 
Genetic mapping is a double-edged sword: while linkage 
disequilibrium enables the initial detection of a locus through 
correlated variants, it complicates pinpointing the true causal 
variant(s). Most association signals occur in non-coding 
genomic regions, where biological interpretation is 
particularly difficult (Hindorff et al., 2009) [17]. Therefore, 
after conducting a GWAS, further steps are typically 
necessary to pinpoint the causal variants and their target 
genes, such as re-sequencing and fine-mapping in multi-
ethnic or admixed populations, methodological 
advancements, functional analyses, or evolutionary genetic 
studies (Thurner et al., 2018) [60]. 
 
GWAS based on SNP arrays depends on pre-existing 

genetic variant reference panels 
 A drawback of SNP array-based GWAS is their reliance on 
the comprehensiveness of prior sequencing studies and 
reference panels used to design genotyping arrays and impute 
untyped variants. This issue has been mitigated by the advent 
of next-generation high-density arrays, which incorporate 
sequencing data from more diverse populations to enhance 
genomic coverage across species and breeds (Hoffmann et al., 
2011) [19]. However, advanced sequencing methods like 
reduced-representation sequencing (RRS) techniques-
including Genotyping-by-Sequencing (GBS) and double-
digest Restriction-site Associated DNA sequencing (ddRAD-
seq)-have emerged as versatile, unbiased alternatives that 
bypass the requirement for prior knowledge of genetic 
variants (Magbanua et al., 2025) [39]. 
 

GWAS are significantly constrained by an stringent 

multiple-testing correction 
A key limitation of genome-wide approaches is the 
requirement for a stringent significance threshold to adjust for 
multiple testing. In GWAS, this is typically achieved through 
Bonferroni correction, which sets the genome-wide false-
positive rate at 5% by assuming approximately 1 million 
independent tests for common variants. Consequently, 
standard GWAS lack sufficient power to capture all SNP-
based heritability, as association signals must surpass this 
strict threshold to be deemed significant (Dudbridge et al., 
2008) [11]. 

 

Large population studies are essential for detecting 

associations  

Adequate sample size with sufficient statistical power is 

crucial for the success of genetic association studies aimed at 

identifying causal genes in complex human diseases. 

https://www.veterinarypaper.com/


 

~ 48 ~ 

International Journal of Veterinary Sciences and Animal Husbandry https://www.veterinarypaper.com 
Genome-wide association studies, in particular, demand 

substantially larger sample sizes to attain the necessary 

statistical power (Hong et al., 2012) [20].  

 

Conclusion 

GWAS has proven to be an excellent tool for identifying 

genes linked to diverse phenotypes and for unravelling the 

mechanisms underlying complex traits. These findings have 

offered unprecedented insights into the role of common 

variants in complex traits, shed light on genome function, and 

created new opportunities for developing therapeutic 

interventions. Looking ahead, deeper exploration of epistasis 

(gene-gene interactions), gene-environment interactions, and 

copy number variants is expected to yield further 

understanding of complex disorders in humans and animals. 

 

Table Caption 

Table 1, traits for which variants identified through Genome-

Wide Association Studies 

Table 2, biological pathways and networks identified through 

GWAS 

Table 3, rare genetic variants associated with economically 

important traits in livestock and poultry species through 

GWAS 

Table 4, other variants other than SNVs associated with traits 

identified by GWAS. 

 
Table 1: Traits for which variants identified through GWAS 

 

S. No. Traits Species References 

1. Visual Score Cattle Machado et al., 2022 [38] 

2. Young stock survival Cattle Cai et al., 2023 [7] 

3. Meat Quality (Water holding capacity and pH) Sheep Revelo et al., 2023 [51] 

4. Body size traits Sheep Liu et al., 2024 [68] 

5. Resilience traits Sheep Argyriadou et al., 2023 [1] 

6. Health and production traits Sheep Kaseja et al., 2023 [24] 

7. Litter size Goat Mahmoudi et al., 2022 [40] 

8. Reproductive traits Cattle Gangwar et al., 2025 [15] 

9. Growth and body conformation traits Goat Moaeen-ud-Din et al., 2022 [43]; Yang et al., 2024 [68] 

10. Growth and reproductive traits Goat Shangguan et al., 2024 [53] 

11. Body measurements and reproductive traits Pigs Lan et al., 2023 [26] 

12. Feed efficiency traits Sheep Zhang et al., 2025 [69] 

13. Body conformation traits Cattle Yu et al., 2023 [67] 

14. Growth traits Pigs Zeng et al., 2024 [68] 

15. Feed efficiency traits Pigs Fu et al., 2020 [14] 

16. Loin muscle area Pigs Zhenyu et al., 2025 [72] 

17. Teat number Pig Li et al., 2023 

18. Immune traits Pig Dauben et al., 2021 [9] 

19. Bone mineral density Pig Nan et al., 2020 [45] 

20. Average daily gain, backfat thickness, eye muscle area Pig Park, 2024 [49] 

21. Growth and Egg traits Poultry Liao et al., 2016 [31] 

22. Body composition and structural soundness traits Pig Fan et al., 2011 [13] 

23. Fatty acid metabolic traits Pig Zhang et al., 2016 [71] 

24. Litter traits Pig Wu et al., 2018 [64] 

25. Hyperpigmentation Broiler Zhou et al., 2022 [73] 

26. Body weight, Growth traits, Body size traits Poultry Dou et al., 2022 [10] 

27. Serum Biochemical Indicators Chicken Song et al., 2023 [56] 

28. Milk production, milk fatty acid Cattle Atashi et al., 2023 [2] 

29. Somatic cell, Body conformation Cattle Wang et al., 2022 [73] 

30. Milk protein and milk minerals Cattle Singh et al., 2022 [55] 

 
Table 2: Biological pathways and networks identified through GWAS 

 

S. No. Species Biological pathway and Network Genes involved References 

1. Cattle 
Lipid biosynthetic process, regulation of lipid metabolism, 

developmental growth, multicellular organism growth 
PPARG, FABP4, ACACA, FASN 

Naserkheil et al., 2020 
[46] 

2. Cattle 
GABAergic synapse pathway, non-alcoholic fatty liver disease 

(NAFLD) pathway 
GABRA2, GABRB1, MTOR, PIK3R1 Sanchez et al., 2017 [52] 

 3. Cattle 

Ion/cation transmembrane transporter activity, neuronal signalling, 

hormone signalling, signal sequence binding (casein micelle 

formation) 

GFI1B, ZNF407, NR5A1 Pegolo et al., 2018 [50] 

4. Pigs Bone and cartilage development, muscle growth, insulin signalling CHCHD3, BMP2, HOXA2, HOXA10 Fan et al., 2011 [13] 

5. 
Cashmere 

goat 
Wnt signaling, BMP signaling (cashmere development) 

PDGFRA, WNT5A, PPP2R1A, 

BMPR2, BMPR1A, SMAD1 
Liu et al., 2022 

6. Chickens Regulation of autophagy pathway ATG5, ATG7, LC3 Zhang et al., 2014 

7. Cattle Steroid metabolism, signal transduction HSD17B3, SHC3, IGFBP2 Bolormaa et al., 2011 [4] 

8. Pig Calcium signalling, transcription factor activity, immune regulation COX10, C2C12, mtND4L Yu et al., 2024 [53] 

9. Pigs Lipid metabolism, glycerolipid metabolism, PPAR signalling PLIN2, LPL, FASN, SCD Zhang et al., 2016 [71] 

10. Chickens Immune response, cytokine-cytokine receptor interaction IL6, CXCL12, TNFSF10 Borodin et al., 2020 [5] 

11. Goats Calcium signaling, extracellular matrix organization CACNA1C, COL1A1, ITGB5 Mucha et al., 2018 [44] 
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Table 3: Rare genetic variants associated with economically important traits in livestock and poultry species through GWAS 

 

S. No. Species Rare variants in genes Traits associated References 

1. Cattle rs110066139 (SLC2A2), rs109326954 (FGF2) Milk fat yield Liu et al., 2020 

2. Pig rs80815129 (PLIN2), rs319647833 (SCD) Backfat thickness Zhang et al., 2016 [71] 

3. Chickens rs315964677 (IL6), rs317219876 (CXCL12) Marek’s disease resistance Li et al., 2021 

4. Goat rs660693523 (DGAT1), rs670258914 (LPL) Milk fat content Martin et al., 2017 [42] 

5. Cattle and Pig rs43705173 (CYP2E1), rs80893456 (IRF2) Methane emissions, gut microbial composition Wen et al., 2023 

6. Chickens rs314672189 (KRT5), rs316543210 (WNT7A) Feather pecking behaviour Lutz et al., 2020 

7. Goats rs668124567 (CACNA1C), rs671893456 (COL1A1) Milk yield Mucha et al., 2018 [44] 

8. Pigs rs319256789 (MC4R), rs80845678 (LEPR) Feed efficiency, growth rate Onteru et al., 2013 [47] 

9. Chickens rs317891234 (GHR), rs315789012 (IGF1) Growth rate, body weight Boschiero et al., 2018 [6] 

 
Table 4: Other variants other than SNVs associated with traits identified by GWAS 

 

S. 

No. 
Species Genetic variants type Traits associated References 

1. Cattle 
CNVs (CNV150 on Chr26: 25,719,640-26,013,587, CNV151 

overlapping ELF3) 

Feed intake (RFI, DMI), milk 

quality, female fertility 
Zhou et al., 2018 [64] 

2. Pig 
CNVs (34 homozygous CNVs: 27 deletions, 7 duplications, 

overlapping exonic regions), Haplotypes 

Growth patterns, fertility, 

metabolic function 
Liu et al., 2025 [30] 

3. Cattle 
CNVs (1755 CNVRs: 9171 deletions, 4101 duplications, 

covering 2.8% autosomes) 

Milk yield, somatic cell score, 

fertility 
Lee et al., 2020 [27] 

4. Pigs 
Structural Variants (123,151 SVs: deletions, duplications, 

insertions, mobile element insertions), Haplotypes 

Carcass traits, skeletal traits, meat 

quality 
Zong et al., 2023 [75] 

5. Goats Haplotypes (CCSER1) Milk fat content, coat colour Martin et al., 2017 [42] 

6. 
Chickens 

 

Indels (1-125 bp insertions/deletions in IGF1), Haplotypes 

(growth-related regions) 
Growth rate, body weight Boschiero et al., 2018 [6] 

7. 
Chickens 

 
CNVs (Chr8: 10,250,123-10,350,789, overlapping IL6A Marek’s disease resistance Li et al., 2021 
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