

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(10): 515-518 © 2025 VET

www.veterinarypaper.com Received: 23-08-2025

Received: 23-08-2025 Accepted: 27-09-2025

Resmi KM

Department of Animal Nutrition, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India

Jith John Mathew

College of Veterinary and Animal Sciences, Pookode, Kerala, India

Ally K

Department of Animal Nutrition, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India

Shyama K

Department of Animal Nutrition, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India

Dipu MT

Cattle Breeding Farm, Thumburmuzhy Kerala Veterinary and Animal Sciences University, Pookode, Kerala, India

Deepak Mathew DK

Cattle Breeding Farm, Thumburmuzhy Kerala Veterinary and Animal Sciences University, Pookode, Kerala, India

Corresponding Author: Resmi KM

Department of Animal Nutrition, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India

Effect of supplementation of L-arginine during early and late gestation on nutrient digestibility of large white Yorkshire sows

Resmi KM, Jith John Mathew, Ally K, Shyama K, Dipu MT and Deepak Mathew DK

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i10g.2684

Abstract

The present study was conducted to assess the effect of supplementation of L-arginine during early and late gestation on nutrient digestibility of Large White Yorkshire (LWY) sows. Twenty four sows were selected at the day of breeding and randomly distributed into four dietary treatment groups viz., a control group (A) receiving un-supplemented basal diet throughout the gestation, late supplemented group (B) receiving 1 per cent L-arginine during last thirty days of gestation, early supplemented group (C) receiving 1 per cent L-arginine during first thirty days of gestation and combined group (D) receiving 1 per cent L-arginine during first and last thirty days of gestation. A digestibility trial of three-day duration was conducted from 105-107th days of gestation. Nutrient digestibility and estimated total digestible nutrients were similar among all treatment groups. Supplementation of 1 per cent L-Arginine during early and late gestation to sows was observed not to influence the digestibility of any nutrients.

Keywords: L-arginine supplementation, gestation, nutrient digestibility, sows

1. Introduction

A significant proportion of low-birth-weight piglets are identified as intrauterine growth restricted (IUGR), that develops as a condition where in foetal development does not meet its genetic potential. In pig foetal development, effective vasculogenesis and angiogenesis are vital for maintaining adequate placental blood flow, which supports normal foetal growth and reduces embryonic mortality. Although sexually mature sows can sustain pregnancy with a moderate litter size (around 8.5 live piglets per litter) without additional dietary arginine, owing to their endogenous synthesis of this amino acid (Islas-Fabila et al., 2024) [6]. This capacity may be inadequate in highly prolific sows. Favourable effects of supplementing the sow diet with L-arginine has been previously demonstrated, Supplementation during early gestation enhanced embryonic survival, increased litter size, and improved birth weight (Gonçalves et al., 2016) [3]. In similar lines supplementation of sow diet during late gestation was reported to decrease the occurrence of stillbirths and low-birth-weight piglets (Nuntapaitoon et al., 2018) [10]. Assessment of nutrient digestibility in pregnant sows receiving L-arginine-supplemented diets was essential to determine its influence on the efficiency of nutrient utilization. Variation in digestibility may alter the availability of energy and amino acids necessary for optimal foetal growth and maternal maintenance (Che et al., 2019) [2]. Therefore, evaluation of digestibility after supplementation with L-arginine of sow diets was undertook in the present study.

2. Materials and Methods

2.1 Feed preparation

A standard pelleted feed was compounded using all ingredients (Table 1) other than rendered fat at RF Feed Mill under School of Animal Nutrition and Feed Technology (SANFT), Mannuthy, Thrissur. Rendered fat was procured from Meat Technology Unit, KVASU,

Mannuthy. Rendered fat was hand mixed uniformly before daily feeding into the pelleted pig feed at CPPR, Mannuthy to achieve the ingredient composition of un-supplemented basal diet. Ingredient composition of supplemented treatment ration was achieved by hand mixing 1per cent L-arginine to basal diet at the time of feeding.

2.2 Feed analysis

The proximate composition of feed *viz.*, moisture, crude protein (CP), crude fibre (CF), ether extract (EE), total ash and nitrogen free extract (NFE) and fibre fractions were analysed (AOAC, 2016)^[1].

2.3 Experimental layout

Twenty four sows were selected at the day of breeding and randomly distributed into four groups: a control group (A) receiving un-supplemented basal diet throughout the gestation, late supplemented group (B) receiving 1 per cent L-arginine during last thirty days of gestation, early supplemented group (C) receiving 1 per cent L-arginine during first thirty days of gestation and combined group (D) receiving 1 per cent L-arginine during first and last thirty days of gestation. Table 1 details the specific ingredient composition of each of the two experimental rations. All animals were kept under the similar management conditions prevailing in the farm. All sows were fed as per guidelines of ICAR (2013) [5]. during the experiment. Feeding was done twice daily, once in the morning at 10 AM and later in evening at 3 PM.

Table 1: Ingredient composition of the experimental concentrate mixture* fed to experimental animals

S.	Ingredients	Percentage	Composition			
No		Basal diet	L-arginine supplemented diet			
1	Yellow Maize	62.5	62.5			
2	Soyabean Meal	27	27			
3	Wheat Bran	2.5	2.5			
4	Rendered Fat	6	6			
5	Calcite	0.5	0.5			
6	Salt	0.5	0.5			
7	Feed supplement*	1	1			
	Total	100	100			
8	L-arginine	0	1			

* Containing DCP - 0.54 kg, Calcite - 0.33 kg Manganese sulphate - 0.002 kg, Ferrous Sulphate - 0.01 kg, Copper Sulphate - 0.001 kg, Zinc Oxide - 0.015 kg, Magnesium oxide -0.08kg, Zinc Sulphate - 0.015 kg, Vitamin AB2D3 - 0.003 kg, Vitamin BE - 0.003 kg, Lysine - 0.0006 kg. Methionine 0.0004 kg per kilogram of feed supplement

2.4 Digestibility trial

A digestibility trial of three days duration was conducted before farrowing among all animals by total collection method. Feed offered, refusals and faeces voided were accurately weighed and same were pooled, mixed thoroughly and representative sub samples taken for storage in deep freezer (-20°C) for further analysis during this period. Chemical composition of faecal samples were analysed as per methods described in Association of Official Analytical Chemists (AOAC, 2016) [1]. Total digestible nutrients were calculated from the above data.

2.5 Statistical analysis

Data obtained on the milk parameters during the course of the experiment were analysed statistically as per Snedecor and Cochran (1994) [11] by using the software statistical

programme for social sciences (SPSS) version 24.0.

3. Results and Discussion

3.1 Chemical composition of feed

The per cent composition of the concentrate mixture fed to the experimental animals are given in Table 2.

Table 2: Chemical composition^{1*} of experimental diet fed to sows,

Nutrients	Experimental diet
Dry matter	90.24 ± 0.31
Crude protein	18.04 ± 0.04
Ether extract	8.96 ± 0.07
Crude fibre	3.92 ± 0.05
Total ash	4.70 ± 0.04
Nitrogen free extract	64.17 ± 0.05
Acid insoluble ash	0.68 ± 0.04
Calcium	0.60 ± 0.02
Phosphorous	0.44 ± 0.02

¹Mean of six values with SE, *On dry matter basis except DM

3.2 Chemical composition of faecal matter of experimental animals

Chemical composition of faecal matter of sows receiving four experimental diets *viz.*, A, B, C and D had a per cent dry matter of 35.62, 36.30, 35.76 and 35.25 respectively. The values were comparable with the values obtained by Mathew *et al.* (2025) ^[9] that varied from 34.14 to 35.07. Ether extract values in the present study ranged from 14.11 to 14.46 per cent. The values were similar to values reported by Mathew *et al.* (2025) ^[9] that was within the range of 15.99 to 18.96. The detailed data on chemical composition are given in Table 3.

Table 3: Chemical composition* of faecal samples of sows maintained on four dietary treatments, %

Parameters	Dietary treatments ¹					
rarameters	A	В	C	D		
Dry matter	35.62±0.38	36.30±0.39	35.76±0.27	35.25±0.27		
Crude protein	13.27±0.64	12.46±0.77	12.89±0.67	12.71±0.72		
Ether extract	14.46±0.38	14.24±0.44	14.11±0.26	14.39±0.32		
Crude fibre	8.92±0.31	9.03±0.55	9.31±0.54	9.18±0.50		
Total ash	20.67±0.45	20.48±0.67	20.56±0.83	21.06±0.71		
Nitrogen free extract	42.67±0.86	43.78±1.12	43.13±1.07	42.65±0.65		
Acid insoluble ash	10.73±0.83	11.45±0.80	11.11±0.72	11.11±0.43		
Calcium	1.65±0.07	1.68±0.09	1.64±0.05	1.68±0.08		
Phosphorus	2.10±0.04	2.08±0.07	2.06±0.06	2.07±0.07		

¹Mean of six values with SE, *On dry matter basis except DM

3.3 Apparent digestibility of nutrients of sows maintained on four dietary treatments, %

Digestibility coefficients of nutrients were calculated for sows maintained under four dietary treatment groups (Table 4). The dry matter digestibility was statistically similar among treatment groups. The values obtained were 86.35, 85.33, 86.09 and 85.81 in A, B, C and D respectively. Lokhande (2020) [7] had documented similar values in dry matter digestibility coefficient ranging from 86.76 to 87.59. There was no difference in crude protein digestibility coefficients among treatment groups viz., A, B, C and D and was 89.99, 89.96, 90.02 and 90.01 respectively. The values were higher than the values obtained by Mathew et al. (2025) [9] ranging from 83.40 to 86.15. The ether extract digestibility was similar among treatment groups and ranged from 77.22 to 77.84 in present study. Lokhande (2020) [7] documented ether extract digestibility ranging from 59.45 to 67.64 among pregnant sows. Thiruveni (2003) [12] reported a higher ether extract digestibility ranging from 84.13 to 90.30. Lowell *et al.* (2015) [8] studied the digestibility of energy and nutrients in sow diet. They observed apparent total tract digestibility of gross energy as 88.23 percent and digestibility of crude protein as 80.90 per cent. They also reported the digestible energy on dry matter basis was 18.82 MJ/kg and Metabolizable energy on dry matter basis was 15.35 MJ/kg.

Crude fibre digestibility was similar among treatment groups ranging from 66.16 to 69.04. Holt *et al.* (2006) ^[4] studied the effect of high fibre diet on nutrient digestibility in gestating sows and observed that sows receiving a high fibre diet showed reduced digestibility of dry matter, energy and nitrogen (p < 0.05).

Table 4: Apparent digestibility of nutrients of sows maintained on four dietary treatments, %

Parameters	Dietary treatments ¹					
rarameters	A	В	С	D	p value	
Dry matter	86.35±0.78	85.33±0.33	86.09±1.00	85.81±0.34	0.743 ^{ns}	
Crude protein	89.99±0.68	89.86±0.66	90.02±0.97	90.01±0.57	0.998 ns	
Ether extract	77.84±1.70	76.72±0.55	78.13±1.50	77.22±0.52	0.840 ns	
Crude fibre	69.04±1.82	66.16±2.36	67.53±1.44	66.68±2.26	0.761 ns	
Nitrogen free extract	90.94±0.50	89.98±0.38	90.64±0.74	90.56±0.27	0.603 ns	

¹Mean of six values with SE; ns- non significant (p>0.05)

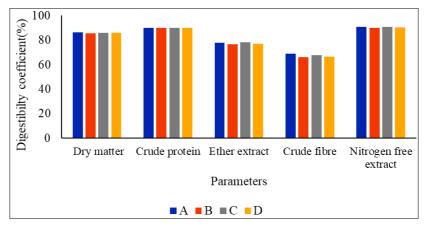


Fig 1: Apparent digestibility of nutrients of sows maintained on four dietary treatments, %

3.4 Estimated total digestible nutrients of sows maintained on four dietary treatments, %

Estimated digestible nutrients were calculated and presented

in Table 5. They were similar among treatment groups for values of DCP, DEE, DCF, DNFE per cent

Table 5: Estimated total digestible nutrients of sows maintained on four dietary treatments, %

Donomotona	Dietary treatments ¹				
Parameters	A	В	С	D	p value
DCP (%)	16.23 ± 0.12	16.21 ± 0.12	16.24 ± 0.17	16.24 ± 0.10	0.998 ^{ns}
DEE (%)	6.97 ± 0.15	6.87 ± 0.04	7.00 ± 0.13	6.92 ± 0.05	0.840 ^{ns}
DCF (%)	2.71 ± 0.07	2.59 ± 0.09	2.64 ± 0.06	2.61 ± 0.09	0.761 ^{ns}
DNFE (%)	58.36 ± 0.32	57.74 ± 0.25	58.16 ± 0.47	58.12 ± 0.18	0.603 ^{ns}

¹Mean of six values with SE, ns- Non significant (p>0.05)

4. Conclusion

Nutrient digestibility and estimated total digestible nutrients were similar among all treatment groups. Supplementation of 1 per cent L-Arginine during early and late gestation to sows was observed not to influence digestibility of any nutrient that were analysed.

5. Acknowledgment

Faculty and facilities at the Department of Animal Nutrition, CVAS Mannuthy, School of Animal Nutrition and Feed Technology, Mannuthy of Kerala Veterinary and Animal Sciences University are duly acknowledged in the conduct of this primary research. The authors are indebted to ICAR AICRP on pigs, CPPR, Mannuthy for extending the facilities required to conduct this study.

Conflict of Interest

Not available

Financial Support

Not available

References

- 1. AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. 20th ed. Washington (DC): AOAC; 2016. p. 684.
- 2. Che L, Hu L, Wu C, Xu Q, Zhou Q, Peng X, *et al.* Effects of increased energy and amino acid intake in late gestation on reproductive performance, milk composition, metabolic, and redox status of sows. J Anim Sci. 2019;97(7):2914-2926.
- 3. Gonçalves MAD, Dritz SS, Tokach MD, Piva JH, DeRouchey JM, Woodworth JC, *et al.* Fact sheet Impact of increased feed intake during late gestation on reproductive performance of gilts and sows. J Swine Health Prod. 2016;24(5):264-266.

- 4. Holt JP, Johnston LJ, Baidoo SK, Shurson GC. Effects of a high-fiber diet and frequent feeding on behavior, reproductive performance, and nutrient digestibility in gestating sows. J Anim Sci. 2006;84(4):946-955.
- ICAR (Indian Council of Agricultural Research). Nutrient Requirements of Animals - Pig. 3rd ed. New Delhi (India): ICAR; 2013. p. 22.
- Islas-Fabila P, Roldan-Santiago P, de la Cruz-Cruz LA, Limon-Morales O, Dutro-Aceves A, Orozco-Gregorio H, Bonilla-Jaime H. Importance of selected nutrients and additives in the feed of pregnant sows for the survival of newborn piglets. Animals (Basel). 2024;14(3):418.
- 7. Lokhande S. Impact of Higher Levels of Dietary Energy Supplementation on the Performance of Sow and Litter. Pookode (India): Kerala Veterinary and Animal Sciences University; 2020. p. 69.
- 8. Lowell JE, Liu Y, Stein HH. Comparative digestibility of energy and nutrients in diets fed to sows and growing pigs. Arch Anim Nutr. 2015;69(2):79-97.
- Mathew JJ, Dipu MT, Ally K, Lalu K, Thirupathy RV, Justin D. Evaluation of feeding fat-rich diets to Large White Yorkshire sows on feed intake and digestibility of nutrients. J Vet Anim Sci. 2025;56(3):429-435.
- 10. Nuntapaitoon M, Tummaruk P. Factors influencing piglet pre-weaning mortality in 47 commercial swine herds in Thailand. Trop Anim Health Prod. 2018;50(1):129-135.
- 11. Snedecor GW, Cochran WG. Statistical Methods. 8th ed. Ames (IA): Iowa State University Press; 1994. p. 503.
- 12. Thiruveni S. Influence of Rendered Fat in the Diet of Large White Yorkshire Sows on Litter Performance. Mannuthy (India): Kerala Agricultural University; 2003. p. 114.

How to Cite This Article

Resmi KM, Mathew JJ, Ally K, Shyama K, Dipu MT, Mathew DDK. Effect of supplementation of L-arginine during early and late gestation on nutrient digestibility of large white Yorkshire sows. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(10):515-518.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.