

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(10): 386-389 © 2025 VET

www.veterinarypaper.com Received: 25-09-2025 Accepted: 24-10-2025

All author's name and affiliations are given below, after references

Performance of *Tenyi vo* pig on diet supplemented with stingless bee (*Tetragonula iridipennis*) honey

Rajan Singh, M Catherine Rutsa, VK Vidyarthi, R Zuyie, Nizamuddin, N Savino, Tsarila ZT Sangtam and Adany S

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i10f.2661

Abstract

The study entitled performance of *Tenyi vo* pig on diet supplemented with stingless bee honey was carried out to study the effect of stingless bee honey on the performance of *Tenyi vo* pigs. The research observation was conducted using twenty four weaned *Tenyi vo* female piglets age two months, for a period of first farrowing. The treatment groups T_2 , T_3 and T_4 were given stingless bee honey at the rate of 0.5 ml, 1.0 ml and 1.5 ml per liter respectively in drinking water on alternate days, and T_1 control group. There was a significant difference (p<0.05) in RBC, WBC, Hb, PCV and MCV among the groups, with T_3 7.81 $10^6/\mu$ l, 23.50 $10^3/\mu$ l, 15.22 g/dl, 41.3% and 56.55 fl showing the higher value respectively. Thus, incorporating stingless bee honey at 1.5 ml into the diet of *Tenyi vo* pigs is recommended for farmers in Nagaland.

Keywords: Tenyi vo pig, stingless bee honey, blood, hematological parameters, north eastern

Introduction

Livestock plays a vital role in Indian agriculture by providing draught power for crop cultivation and transportation. It also contributes substantially to the production of organic manure, thereby improving soil fertility and crop productivity. Furthermore, livestock serves as an important source of food, income, and nutrition, supporting rural households and helping to alleviate poverty (Sothu *et al.*, 2024) ^[19]. In particular, pig rearing constitutes a major livelihood activity among the tribal communities of the North Eastern Region of India. The growing demand for pork, driven by rising per capita income, urbanization, and changing lifestyles and dietary habits, presents a valuable opportunity for the region's inhabitants to enhance their income through pig farming (Laha *et al.*, 2014) ^[6].

Stingless bees are the smallest among honey-producing species, and their honey holds great importance in the lives of tribal farmers, benefiting both humans and livestock by promoting health and well-being (Souza *et al.*, 2006) ^[20]. Belonging to the tribe *Meliponini*, stingless bees encompass several genera, including *Melipona*, *Trigona*, and *Heterotrigona*. These bees are widely distributed across tropical and subtropical regions such as Africa, Southeast Asia, Australia, and South America (Mohd Rafie *et al.*, 2018) ^[11]. In India, *T. iridipennis* and *T. laeviceps* are the most common species found (Rahman *et al.*, 2018) ^[13].

Stingless bee honey (SBH) is highly valued for its diverse medicinal and nutritional benefits and has long been used as a natural remedy for various ailments (Zulkhairi Amin *et al.*, 2018; Souza *et al.*, 2006) ^[26, 20]. Compared to honey produced by *Apis mellifera*, SBH possesses a milder taste and distinctive physicochemical characteristics, including differences in sugar content, water percentage, mineral composition, and ash levels. It is further defined by its specific color, acidity, pH, electrical conductivity, and viscosity (Nordin *et al.*, 2018; Souza *et al.*, 2021) ^[12, 21].

Biochemically, SBH is enriched with bioactive compounds such as flavonoids, antioxidants, and antibacterial agents. These constituents contribute to its remarkable therapeutic potential, including wound healing, anti-diabetic, and anticancer properties (Mohammad *et al.*, 2021; Bafo *et al.*, 2019; Santisteban *et al.*, 2019) [10, 4, 14].

Corresponding Author: Rajan Singh

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India Owing to these complex biological and functional components, SBH may serve as a potent natural supplement capable of enhancing animal growth and overall health. Despite its promising properties, there is a lack of scientific data regarding the effects of SBH supplementation on livestock, particularly on *Tenyi vo* pigs. Therefore, the present study seeks to investigate the influence of stingless bee honey on the growth performance and health parameters of *Tenyi vo* pigs, providing a foundation for future research in this emerging field.

Materials and Methods

A total of twenty four (24) weaned Tenyi vo pigs of fifty to sixty (50-60) days of age was selected for the present study from the farm of Indian Council of Agricultural Research All India Coordinated Research on pig (ICAR-AICRP), Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus-797106, Nagaland. The experimental animals were randomly selected irrespective of body weight and sex. The piglets were divided into four treatments with five animals in each group, the first group as control and the second, third and fourth was provided with the test material stingless bee honey at different levels of: 0, 0.50, 1.00 and 1.50 ml once in two (2) days in drinking water. Four animals from each treatment group were selected and blood samples were collected from the annual through ear vein using sterile syringe and needle (Photo plate 3). About 2 ml of blood sample collected from each animal using ethylene Diamine tetra acetic acid (EDTA) collected into a specimen tube for hematological parameters. Haematological profiles such as red blood corpuscles, white blood corpuscles, haemoglobin, packed cell Volume and mean corpuscular volume were estimated using whole blood samples following standard methods described by Sastry (1989) [17]. All the data obtained were analysed by following a Completely Randomized Design (CRD) using one-way analysis of variance (ANOVA) as per Snedecor and Cochran (1980). The differences between treatments were analyzed by using a one-way analysis of variance (ANOVA) at a 5% significance level to determine the significance and non-significance of the variance of the different treatments. Further, the differences between the feed intake and feed conversion efficiency treatments were analyzed by Duncan's Multiple Range Test (DMRT) method to determine the difference between the treatments.

Results and Discussion Hematological parameter

The average red blood cell (RBC) counts (Table.1) recorded for groups T_1 , T_2 , T_3 , and T_4 were 5.25, 6.32, 7.81, and 6.45 million cells/ μ l (106/ μ l) groups, respectively. The RBC count was significantly higher (p<0.05) in the T_3 group (7.81×106/ μ l) compared to all other groups. The T_4 group (6.45×106/ μ l) also showed a significantly higher RBC count

than the control (T_1) but was lower than T_3 . The white blood cell (WBC) counts for T_1 , T_2 , T_3 , and T_4 were 24.29, 23.56, 24.50, and 16.17×10³/cumm, respectively. No significant differences were observed among T1, T2, and T3, which recorded similar values. However, the T4 group exhibited a significantly lower WBC count (16.17×10³/cumm) compared to the other groups (p<0.05). The normal WBC range reported by Sastry et al. (2019) [17] is 11-22×10³/cumm. The slightly elevated WBC values in Tenyi vo pigs may be attributed to their alert temperament and stress during handling or transportation for blood collection. Hemoglobin (Hb) concentrations for T₁, T₂, T₃, and T₄ were 10.25, 11.30, 15.22, and 12.32 g/dl, respectively. The T₃ group exhibited the highest Hb value (15.22 g/dl), significantly different from all other treatments (p<0.05). The T₄ group (12.32 g/dl) also showed significantly higher Hb levels than T₁ (10.50 g/dl) but lower than T₃. The T₂ group (11.30 g/dl) showed intermediate values without significant differences from T₁ or T₄. Packed cell volume (PCV) percentages were 38.23%, 35.19%, 41.3%, and 38.89% for T₁, T₂, T₃, and T₄, respectively. The T₃ group recorded a significantly higher PCV (41.3%) than T₁ and T₂, indicating enhanced erythropoiesis and improved oxygencarrying capacity. The T₄ group (38.89%) showed no significant difference from T₁. Mean corpuscular volume (MCV) values were 51.27, 53.38, 56.55, and 55.89 fl for T₁, T₂, T₃, and T₄, respectively. The T₃ group had a significantly higher MCV (56.55 fl) than the other groups (p<0.05), suggesting that Stingless Bee Honey supplementation positively influenced red blood cell size. Similar findings were reported by Xin et al. (2018) [24], who observed improved erythropoiesis in pigs fed natural supplements. The Hb and PCV values recorded in this study align with the normal physiological ranges reported by Sastry et al. (2019) [17] and are consistent with those of Mili et al. (2020) [9], who reported 10.98±0.74 g/dl Hb and 32.98±1.07% PCV in pigs. Higher PCV values generally indicate better health and oxygen transport efficiency. This observation supports the findings of Sahlan et al. (2020) [15], who noted that Stingless Bee Honey maintained normal PCV levels in diabetic rats, emphasizing its role in supporting haematological health.

Conclusion

The findings of the present study demonstrate that dietary supplementation with Stingless Bee Honey has a positive influence on the haematological parameters of $Tenyi\ vo$ pigs. Among the treatments, the T_3 group exhibited the most favourable results, with significantly higher values of RBC, haemoglobin, PCV, and MCV, indicating enhanced erythropoiesis, improved oxygen-carrying capacity, and better overall blood health. Although WBC counts remained within or slightly above the normal physiological range, the lower WBC level observed in T_4 suggests that higher honey supplementation may help stabilize immune responses.

Table 1: Effect of stingless bee honey on hematological parameters of different treatment groups.

Hematological Parameters					
Treatments	RBC(106 cell/μL)	WBC (Cumm.)	Hb (g/dl)	PCV (%)	MCV (fl)
T_1	5.25 ^a	24.20a	10.50a	38.75a	51.72a
T_2	6.61a ^b	23.76a	11.35 ^{ab}	35.35a	54.30 ^b
T ₃	7.88 ^c	24.50a	15.02°	44.77 ^b	57.35°
T ₄	6.99 ^b	16.17 ^b	12.60 ^b	39.82a	56.85°
SE(m)	0.21	2.66	0.58	0.70	0.31
CD (P=0.05)	0.68	0.85	0.18	0.22	0.96

a, b, c, Means bearing different superscript in column differ significantly at 5% level of significance

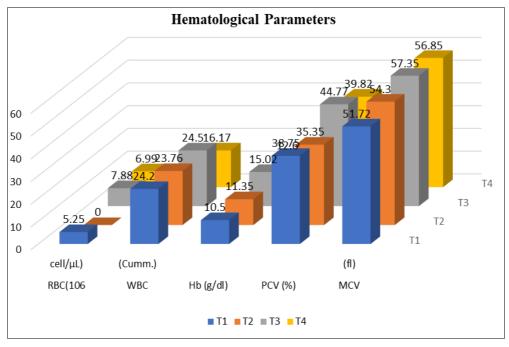


Fig 1: Effect of stingless bee honey on hematological parameters of different treatment groups

Overall, these results suggest that Stingless Bee Honey, when supplemented at appropriate levels, can serve as a natural functional additive to improve haematological health and physiological performance in pigs. Its bioactive compounds likely contribute to improved blood profile and general wellbeing. Further research is recommended to determine the optimal inclusion level and to explore its long-term effects on productivity and immunity in livestock.

Acknowledgement

The authors would like to express their gratitude to ICAR-AICRP on Pig Nagaland center, for funding this research study. They also acknowledge the support of ICAR-AICR on Pig, Medziphema, Nagaland, for providing *Tenyi vo* pigs for the study.

Conflict of interest

There is no conflict of interest on this article.

Financial Support

Not available

Reference

- Agussalim, Umami N, Nurliyani, Agus A. Stingless bee honey (*Tetragonula laeviceps*): Chemical composition and their potential roles as an immunomodulator in malnourished rats. Saudi J Biol Sci. 2022;29:103404.
- 2. Amer T, Rutsa MC, Savino N, Singh R. Performance of Tenyi vo pig on diet supplemented with nutgall (Rhus semialata) fruit. Pharma Innov J. 2023;12(2):1464-71.
- 3. Atchiwassa S, Ayssiwede SB, Kadja MC, Kalandi M, Ossebi W, Michihoun GS, Missohou A. Effect of diets containing dried cashew apple pulp (*Anacardium occidentale*) on local pigs' health status via biochemical and hematological parameters in South Senegal. Anim Vet Sci. 2024;12(1):19-30.
- 4. Bafo W. Meliponiculture and physicochemical properties of honey produced by the African stingless bee *Plebeina hildebrandti* Friese in Kalakamati village, Botswana. Botswana J Agric Appl Sci. 2019;13(1):33-42.
- 5. Eze JI, Onunkwo JI, Shoyinka SVO, Chah FK, Ngene

- AA, Okolinta N, *et al.* Hematological profiles of pigs raised under intensive management system in South-Eastern Nigeria. Niger Vet J. 2010;31(2):115-23.
- 6. Laha R, Das M, Goswami A, Sailo B, Sharma BK, Gangmei D, Ngullie E. Prevalence of gastrointestinal parasitic infections in pigs of North Eastern region of India. Indian J Hill Farming. 2014;27(1):110-7.
- 7. Lanuyanger, Nizamuddin MC, Rutsa R, Zuyie VK, Vidyarthi N, Savino N, *et al.* Productive and reproductive performance of male Tenyi vo pig in field condition. Uttar Pradesh J Zool. 2023;44(11):7-14.
- 8. Lavinas FC, Gomes BA, Silva MV, Nunes RM, Leitão SG, Moura MR, *et al.* Discriminant analysis of Brazilian stingless bee honey reveals an iron-based biogeographical origin. Foods. 2023;12(1):2-13.
- 9. Mili B, Laltlankimi TC, Devi RM, Ralte L, Yore K, Gogoi A. Hematology and serum biochemical profiles of indigenous Tenyi vo pigs of Nagaland. Int J Livest Res. 2020;10(10):130-6.
- Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N. Stingless bee-collected pollen (bee bread): Chemical and microbiological properties and health benefits. Molecules. 2021;26(4):957.
- 11. Rafie MAZ, Syahir A, Ahmad WWAN, Mustafa MZ, Mariatulqabtiah AR. Supplementation of stingless bee honey from *Heterotrigona itama* improves anti-obesity parameters in high-fat diet induced obese rat model. Evid Based Complement Alternat Med. 2018;2018:6371582.
- 12. Nordin A, Sainik NQAV, Chowdhury SR, Saim AB, Idrus RBH. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J Food Compos Anal. 2018;73:91-102.
- 13. Rahman A, Das PK, Rajkumari P, Saikia J, Sharmah D. Stingless bees (Hymenoptera: Apidae: Meliponini): Diversity and distribution in India. Int J Sci Res (IJSR). 2018;4(1):77-81.
- 14. Santisteban RM, Cabrera SP, Neto JF, Silva EM, Correia RC, Alves RF, et al. Análises melissopalinológicas, físico-químicas, atividade antirradicalar e perfil químico por UPLC-DAD-QTOF-MS/MS dos méis de Frieseomelitta doederleini (abelha branca): comparação

com os fenólicos presentes nas flores de Mimosa tenuiflora (jurema preta). Quim Nova. 2019;42(8):874-884.

- 15. Sahlan M, Rahmawati O, Pratami DK, Raffiudin R, Mukti RR, Hermasyah H. The effects of stingless bee (*Tetragonula biroi*) honey on streptozotocin-induced diabetes mellitus in rats. Saudi J Biol Sci. 2020;27(8):2025-30.
- 16. Sastry GA. Veterinary Clinical Pathology. 3rd Ed. Delhi: CBS Publishers and Distributors Pvt Ltd; 1989.
- 17. Sastry GA. Veterinary Pathology. 7th Ed. Delhi: CBS Publishers and Distributors Pvt Ltd; 2019.
- 18. Snedecor GW, Cochran WG. Statistical Methods. Iowa: Iowa State University Press; 1980.
- 19. Sothu H, Rutsa MC, Zuyie R, Vidyarthi VK, Nizamuddin, Savino N, *et al*. Effect of roselle (*Hibiscus sabdariffa*) calyx on the performance of Tenyi vo pig. Int J Vet Sci Anim Husb. 2024;9(2):227-33.
- Souza B, Roubik D, Barth O, Heard T, Enríquez E, Carvalho C, et al. Composition of stingless bee honey: Setting quality standards. Interciencia. 2006;31(12):867-875
- 21. Souza ECA, Menezes C, Flach A. Stingless bee honey (Hymenoptera: Apidae: Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie. 2021;52:113-32.
- 22. Sumi SS, Zuyie R, Rutsa MC, Vidyarthi VK, Savino N, Singh R. Performance of upgraded Tenyi vo pig on diet replaced with dried distillers grain with solubles. Uttar Pradesh J Zool. 2024;45(4):80-91.
- 23. Talilemba, Rutsa MC, Zuyie R, Singh R. Effect of feeding button weed silage on the growth performance of upgraded Tenyi vo pig. J Agric Vet Sci (IOSR-JAVS). 2022;15(12):8-15.
- 24. Xin JL, Hyeok MY, Kim LH. Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs. Asian-Australas J Anim Sci. 2018;17(4):984-993.
- 25. Yan L, Meng QW, Kim LH. The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs. Livest Sci. 2011;141(2-3):143-147.
- 26. Amin ZFA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, *et al.* Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv Pharmacol Pharm Sci. 2018;2018:6179596.

All Author's Name and Details Rajan Singh

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

M Catherine Rutsa

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

VK Vidvarthi

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

R Zuvie

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

Nizamuddin

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

N Savino

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

Tsarila ZT Sangtam

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

Adany S

Department of Livestock Production and Management, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Medziphema, Nagaland, India

How to Cite This Article

Singh R, Rutsa MC, Vidyarthi VK, Zuyie R, Nizamuddin, Savino N, *et al.* Performance of *Tenyi vo* pig on diet supplemented with stingless bee (*Tetragonula iridipennis*) honey. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(10):386-389.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.