

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(10): 231-238 © 2025 VET

www.veterinarypaper.com Received: 02-06-2025 Accepted: 04-07-2025

Ashim Pal

Research Scholar, Department of Veterinary Medicine, Ethics & Jurisprudence, F/O-VAS, WBUAFS, West Bengal, India

Samar Sarkar

Professor, Department of VMEJ, WBUAFS, West Bengal, India

S Dutta

Assistant Professor, Department of AGB, WBUAFS, West Bengal, India

Sukanta Biswas

Professor, Department of VAHEE, F/O-VAS, WBUAFS, Department of Veterinary Medicine, Ethics & Jurisprudence, University of Animal & Fishery Sciences, Kolkata West Bengal, India

Corresponding Author: Sukanta Biswas

Professor, Department of VAHEE, F/O-VAS, WBUAFS, Department of Veterinary Medicine, Ethics & Jurisprudence, University of Animal & Fishery Sciences, Kolkata West Bengal, India

Comparative efficacy of veterinary Ayurveda over conventional allopathic practices on various physiological & hematological parameters in relation to IBD as complex digestive disorder in canine pets of India

Ashim Pal, Samar Sarkar, S Dutta and Sukanta Biswas

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i10d.2634

Abstract

In recent years, pet dogs in India have become integral family members, with increased attention to canine health issues, particularly digestive disorders such as Inflammatory Bowel Disease (IBD). IBD in dogs is characterized by chronic intestinal inflammation, manifesting as vomiting, diarrhoea, abdominal discomfort, and nutrient mal-absorption, with similarities to human IBD and IBS. This study aimed to assess the prevalence, clinical patterns, and therapeutic effects of conventional and Ayurveda treatments on IBD in pet dogs. Conducted over three years (June 2021-May 2024) at the Veterinary Clinical Complex, Kolkata, and selected private clinics in West Bengal, the study included 24 Labrador Retrievers aged 6-12 years. Dogs were assigned to healthy control (Group I), conventional veterinary practice (CVP, Group II), Ayurveda drug-minimum dose (ADMD, Group III), and Ayurveda drugstandard dose (ADSD, Group IV). Physiological parameters (temperature, pulse, respiration), haematological indices (Hb, RBC, WBC, PCV, MCV, platelets, ESR), and faecal and biochemical analyses were monitored. Results showed significant improvement in physiological and haematological parameters in CVP and ADSD groups by day 28, approaching levels of healthy controls. ADMD group exhibited slower recovery. Both allopathic and Ayurveda interventions effectively reduced inflammation, modulated immune responses, and stabilized physiological functions, with herbal therapy showing potential as an adjunct or alternative treatment. This study highlights the clinical relevance of veterinary Ayurveda in managing canine IBD, supporting improved gastrointestinal health, haematological recovery, and overall well-being, and provides evidence for integrating traditional and conventional therapies in veterinary practice.

Keywords: Ayurveda, Allopathic, practices, Physiological, hematological, parameters Comparative, Conventional, efficacy, IBD digestive, disorder, Canine pet etc.

Introduction

In India, dogs have evolved from traditional working animals to beloved family companions, reflecting the growing human-dog bond across all sections of society. With this shift, attention to canine health and well-being has increased, especially concerning digestive disorders such as Inflammatory Bowel Disease (IBD), a chronic and complex condition characterized by intestinal inflammation, altered gut micro biota, and impaired digestion. Conventional allopathic treatments for IBD often provide symptomatic relief but may be associated with side effects or incomplete recovery. In contrast, Ayurveda veterinary practices emphasize holistic healing through natural formulations that aim to restore physiological balance and immune stability. The present study, conducted on canine patients at the Veterinary Clinical Complex, Belgachia, Kolkata, focuses on comparing the efficacy of veterinary Ayurveda therapy with conventional allopathic treatments by evaluating various physiological and haematological parameters, thereby exploring integrative approaches for managing IBD and improving canine health outcomes in the Indian context.

Materials and Methods

The study was conducted over three years (June 2021-May 2024) at the Veterinary Clinical Complex (VCC), Departments of Veterinary Medicine, Surgery and Radiology, and Biochemistry, Faculty of Veterinary Science, WBUAFS, Kolkata, and selected private clinics. A total of 24 Labrador Retrievers aged 6-12 years were categorized into four groups: Group I (Healthy Control), Group II (Conventional Veterinary Practice), Group III (Ayurvedic Drug-Minimum Dose), and Group IV (Ayurvedic Drug-Standard Dose). Clinical, physiological (rectal temperature, pulse, respiration), and haematological parameters (Hb, PCV, MCV, RBC, WBC, neutrophil, lymphocyte, eosinophil, monocyte, platelet, ESR) were recorded using standard methods (Jain, 1986). Blood samples were collected aseptically via vein puncture and analysed with an automatic cell counter. Dogs were handled gently to minimize stress-induced variations. Statistical analysis was performed using IBM SPSS® version 20, applying ANOVA and Turkey's HSD tests with significance levels set at p<0.05 and p<0.01.

Results and Discussion

Physiological parameters-Temperature

On day 0, the values of temperature of CVP group

(104.73±.90 °F), ADMD group (104.37±.98 ° F) and ADSD group (104.38±.63 ° F) were observed to be significantly (p<0.01) higher than healthy Control group value (100.68±.98 °F). In the control group, no significant variation was observed in the rectal temperature on the days 0, 14 and 28. Values of CVP group (day 0: 104.73±.90 °F, day 14:103.38±.82 °F, day 28:101.85±.83 °F) and ADSD group (day 0:104.38±.63 °F, day 14: 102.47±.39 °F, day 28: 100.82±.69 °F) showed a trend of decrease significantly at (p<0.01) from day 0 today14 and from day14 today 28 which was not evidenced from the values of ADMD group (day 0: 104.37±.98 °F, day 14: 104.00±.86 °F, day 28: 103.32±1.29 °F). On day 28, values of ADSD group (100.82±.69 °F) and CVP group (101.85±.83 °F) were in the same range of the healthy Control group (100.83±.68 °F). Treatment with the allopathic medications usually helps maintain a stable range and continuous monitoring of body temperature is recommended to assess the treatment's effectiveness and detect any adverse reactions as reported by Sullivan, et al. (2018) [40], Holt, et al. (2019) [18] and Cohen, et al. (2020) [11]. These botanicals collectively show promising potential in controlling inflammation, oxidative stress, and temperature regulation during IBD episodes in dogs as reported by Bhatia, (2016) [7], Ranjan, et al. (2020) [33], Shukla, et al. (2020) [37].

Table 1: Effect of the different treatments on Range of Temperature (oF) (Mean \pm SD) of different four groups of experimental dog

Range of Temperature			
Treatment	0 days	14 days	28 days
Control	100.68±.98b	100.50±.73°	100.83±.68 ^b
CVP	104.73±.90 ^a	103.38±.82ab	101.85±.83 ^{ab}
ADMD	104.37±.98a	104.00±.86a	103.32±1.29a
ADSD	104.38±.63a	102.47±.39 ^b	100.82±.69 ^b
P-Value	< 0.001**	< 0.001**	< 0.001**

^{**}Significant at 1% (*p*<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Turkey's HSD test for multiple comparisons.

Physiological parameters-Pulse Rate

The mean \pm SD values of pulse rate of dogs in the healthy Control group and the three treatment groups are presented here. In the healthy Control group, no significant variation was observed in the pulse rate on the days 0, 14 and 28 (day 0: 80.50±4.50 Pulse rate/min, day 14:81.00±3.94 pulse rate/min, day 28:80.16±3.71 pulse rate/min).On day 0,values of CVP group (105.83±5.11pulserate/min), ADMD group (101.67±6.19 pulse rate /min) and ADSD group (101.00±7.24 pulse rate/min) were seem to be significantly (p<0.01) higher than that of the healthy Control group (80.50±4.5 pulse rate/min). In treatment group CVP (day 0:105.83±5.11 pulse 14:93.3333±3.83 pulse rate/min, day rate/min, day 28:84.50±2.42 pulse rate/min), ADMD group (day 0:101.67±6.19 pulse rate/min, day14:97.83±8.18pulse rate/min, day 28: 96.83±5.60 pulse rate/min) and ADSD group (day 0:101.00±7.24 pulse rate/min, day 14:88.50±5.72 pulse rate/min, day 28:80.50±3.45 pulse rate/min), the pulse

rate was seen to significantly (p<0.01) decrease from day 0 to day 14 and day 14 to day 28 and also the values of CVP group and ADSD group remained within the normal range of pulse rate. On day 28, the values of CVP group (84.50±2.42 pulse rate/min) and ADSD group (80.50±3.45 pulse rate/min) remained in the same range to that of the healthy Control group (80.16±3.7 pulse rate/min). Monitoring pulse rate during treatment with allopathic medications is essential as reported by Holt, et al., (2019) [18], Cohen, et al., (2020) [11]. Similar studies were made by Holt, et al. (2019) [18], Cohen, et al. (2020) [11], Ranjan, et al. (2020) [33], Shukla, et al. (2020) [37], Suchodolski, et al. (2021) [39] with the explanation that the use of herbal medications in managing IBD symptoms might indirectly influence pulse rate by improving overall gastrointestinal health and it is important to monitor these physiological parameters regularly to ensure optimal health outcome.

Table 2: Effect of the different treatments on Range of Pulse Rate (pulse rate/min), (Mean ± SD) of different four groups of experimental dog

Range of Pulse Rate			
Treatment	0 days	14 days	28 days
Control	80.50±4.50 ^b	81.00±3.94°	80.16±3.71 ^b
CVP	105.83±5.11 ^a	93.33±3.83 ^{ab}	84.50±2.42 ^b
ADMD	101.67±6.19 ^a	97.83±8.18 ^a	96.83±5.60a
ADSD	101.00±7.24 ^a	88.50±5.72bc	80.50±3.45 ^b
P-Value	< 0.001**	< 0.001**	< 0.001**

^{**}Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Physiological parameters-Respiration

The respiration rate for healthy Control dogs as well as the dogs considered for the 3 treatment groups are presented here. On day 0, values of CVP group (26.33±1.96 respiration rate/min), ADMD group (27.17±2.31 respiration rate/min) and ADSD group (25.33±1.75 respiration rate/min) showed to be significantly (p<0.01) higher than that of healthy Control group (21.17±2.32 respiration rate/min). The respiration rate for the Control group did not vary from each other significantly on day 0 (21.17±2.32 respiration rate/min), day 14 (20.50±2.42 respiration rate/min) and day 28 (20.83±1.72 respiration rate/min). Treatment group CVP (day 0 26.33±1.96 respiration rate/min, day 14:21.50±1.87 and day 28: 18.00±1.41 respiration rate/min), ADMD group (day 0 27.17±2.31 respiration rate/min, day 14:24.33±2.58 and day 28: 24.17±1.41 respiration rate/min)and ADSD group (day 0 rate/min, day 14:21.33±1.63 25.33±1.75 respiration respiration rate/min and day 28: 19.00±1.09 respiration rate/min) showed a gradual decrease from day 0 to day14 (not significant), from day 14 to day28, significant at (p<0.01). In all the cases, the values remained within the normal range for respiration rate in dogs. On day 28, CVP group value (18.00±1.41respirationrate/min) and ADSD group value (19.00±1.09 respiration rate/min) showed significantly (p<.01) lower value than that of the healthy Control group (20.83±1.72 respiration rate/min) whereas on the same day, ADMD group value (24.17±1.47 respirationrate/min) showed significantly (p<.01) higher value from that of the healthy Control group. In the context of IBD, monitoring respiratory rate is crucial as metronidazole, tylosin, and prednisolone have various systemic effects, including potential impacts on respiratory function as reported by Sullivan, et al. (2018) [40], Holt, et al. (2019) [18], Cohen, et al. (2020) [11]. Similar findings were made by Bhatia, et al. (2016) [7], Ranjan, et al. (2020) [33] and Shukla, et al. (2020) [37] that the respiratory rate in dogs with IBD is positively influenced by the incorporation of these herbal remedies and each plant offers unique benefits that contributed to overall well-being and possibly stabilized physiological functions such as respiration.

Table 3: The effect of the different treatments on Range of Respiration rate/min), (Mean \pm SD) of different four groups of experimental dog

Range of Respiration				
Treatment	0 days	14 days	28 days	
Control	21.17±2.32b	20.50±2.42b	20.83±1.72b	
CVP	26.33±1.96a	21.50±1.87ab	18.00±1.41°	
ADMD	27.17±2.31a	24.33±2.58a	24.17±1.47a	
ADSD	25.33±1.75 ^a	21.33±1.63ab	19.00±1.09bc	
P-Value	< 0.001**	0.032	< 0.001**	

^{**}Significant at 1% (p<0.01) level; N. B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Haematological Parameters-Haemoglobin (HB)

The value of haemoglobin in the affected animals (CVP group: 9.93 ± 0.87 g/dL, ADMD group: 9.47 ± 0.67 g/dL, ADSD group: 10.10 ± 1.30 g/dL) was found to be significantly (p<0.01) lower than that of the healthy Control group (13.58 ± 1.15 g/dL) on day 0. After treatment it was observed that, the mean \pm SD values of haemoglobin in CVP group increased signific antly (p<0.01) from day 0 onwards (day $0.9.93\pm0.87$ g/dL, day $14.11.48\pm0.75$ g/dL, day $28.13.60\pm0.68$ g/dL). Similar pattern of increase in the value of haemoglobin was seen in treatment group ADSD (day $0.10.10\pm1.30$ g/dL, day $14.11.85\pm1.09$ g/dL, day $28.13.75\pm0.87$ g/dL) and there

is slight increase in the value of haemoglobin was seen in treatment group ADMD (day 0:9.47±0.67g/dL, day 14 :10.33±0.63 g/dL, day 28:10.82±0.55 g/dL).Onday14 of treatment, all 3 treatment groups (CVP group:11.48±0.75 g/dL, ADMD group: 10.33±0.63 g/dL, ADSD group: 11.85±1.09 g/dL) showed haemoglobin values to be lower than that of the healthy Control group (13.88±1.21 g/dL), significantly at (p<0.01). However, on day 28 of treatment, ADSD group (13.75±0.87 g/dL) and CVP group values (13.60±0.68 g/dL) were seen to be higher as that of the healthy Control group (13.58±1.15 g/dL) whereas on the day 28 of treatment, ADMD group values (10.82±0.55 g/dL) was seen to be lower than that of the respective Control group (13.58±1.15 g/dL). Effective management of IBD through these medications can help stabilize haemoglobin levels by addressing the underlying causes of anemia, such as chronic inflammation and malnutrition which is supported by the study findings of Allenspach, et al. (2016) [1], McCarthy & Lascelles (2018) [25] and Craven, et al. (2019) [12]. The studies of Bhan & Singh, (2015) [6], Dey, et al. (2016) [14], Nambiar, et al. (2018) [26] and Raghavendra & Kumar (2021) [32] suggested that the combination of these herbs may provide a supportive role in managing haemoglobin levels in dogs suffering from IBD by improving overall gut health and nutrient absorption.

Table 4: Effect of the different treatments on HB (g/dL), (Mean \pm SD) of different four groups of dog

Haemoglobin			
Treatment	0 days	14 days	28 days
Control	13.61±1.41 ^a	13.88±1.21 ^a	13.58±1.15 ^a
CVP	9.93±.87 ^b	11.48±.75 ^b	13.60±.68a
ADMD	9.47±.67 ^b	10.33±.63 ^b	10.82±.55 ^b
ADSD	10.10±1.30b	11.85±1.09 ^b	13.75±.87 ^a
P-Value	< 0.001**	< 0.001**	< 0.001**

**Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Packed Cell Volume (PCV)

The effect of different treatments on PCV (%), (Mean \pm SD). On day 0, CVP group (34.38±1.59%), ADMD group (34.68±1.57%) and ADSD group (34.09±1.01%) showed significantly lower values (p < 0.01) compared to healthy Control group (41.00±5.14%). After treatment from day 0 to day 14, CVP Group (day 0: 34.38±1.59%, day 14:36.68±1.79%), ADMD group (day 0:34.68±1.57%, day 14:35.36±1.58%) and ADSD group (day 0: 34.09±1.01%, day 14: $35.78\pm.97\%$) showed significant (p<0.05) increase indicating improvement of condition upon therapy. After treatment from day0 to day 28, CVP group (day 0: 34.38±1.59%, day 28:38.46±1.26%), ADMD group (day 0:34.68±1.57%, day 28:35.80±1.51%) and ADSD group (day 0: 34.09±1.01%, day 28: 38.27±.98%) showed progression of PCV values of all three groups but the values of respective group is not significant in comparison to healthy Control group. A study by Allenspach et al. (2016) [1], McCarthy & Lascelles (2018) [25] and Craven et al. (2019) [12] noted improvements in clinical signs of IBD with allopathic management, suggesting potential benefits in hematologic parameters. The herbs have properties that may help improve overall health, gut function, and haematological parameters, including PCV which is simulated with the findings of Puri & Sharma (2015) [31], Dey, et al. (2016) [14], Nambiar, et al. (2018) [26] and Raghavendra & Kumar (2021) [32].

Table 5: Effect of the different treatments on PCV (%) (Mean \pm SD) of different four groups of dog

Packed Cell Volume			
Treatment	0 days	14 days	28 days
Control	41.00±5.14a	39.53±4.05a	39.87±4.61
CVP	34.38±1.59b	36.68±1.79ab	38.46±1.26
ADMD	34.68±1.57 ^b	35.36±1.58 ^b	35.80±1.51
ADSD	34.09±1.01 ^b	35.78±.97 ^{ab}	38.27±.98
P-Value	0.001**	0.030*	0.079

*Significant at 5% (p<0.05) level **Significant at 1% (p<0.01) level N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

$\label{eq:computation} \begin{array}{lll} Hematological & Parameters-Mean & Corpuscular & Volume \\ (MCV) & & & \end{array}$

The data represented the effect of different treatments on MCV (fl). On day 0, the values of CVP group (62.06±2.65fl), group $(65.73\pm1.81fl)$ and ADSD (63.95±1.45fl) were lower than that of the healthy Control group (65.95±5.84 fl). After treatment fromday0 to day14, all three groups are showing progression in MCV values respectively CVP group (day 0: 62.06±2.65 fl, day 14: 67.47±2.37fl), ADMD group (day 0:65.73±1.81fl, day 14:67.24±2.21fl) and ADSD group (day 0:63.95±1.45 fl, day14:68.38±2.54fl). But all the values of respective group are not significant. On day 28, CVP group (68.40±3.47 fl), group (68.10±2.10 fl) and ADSD group $(73.25\pm2.51\text{fl})$ showed values significantly (p<0.01) higher than healthy Control group (65.81±6.95 fl) indicating improvement of condition upon therapy. A study by Allenspach, et al. (2016) [1] supports the effectiveness of metronidazole in managing IBD symptoms, leading to improved hematological parameters. Craven, et al. (2019) [12] noted that managing dysbiosis can result in better clinical outcomes and hematological parameters in dogs with gastrointestinal diseases. According to McCarthy & Lascelles (2018) [25], corticosteroids can improve red blood cell production. The use of herbal medicines help improves hematological parameters, including MCV, similar observations were made by Puri & Sharma (2015) [31], Dey, et al. (2016) [14], Nambiar, et al. (2018) [26] and Raghavendra & Kumar (2021) [32].

Table 6: Effect of different treatments on MCV (fl) (Mean \pm SD) of different four groups of dog

Mean Corpuscular Volume				
Treatment	0 days	14 days	28 days	
Control	65.95±5.84	65.78±4.86	65.81±6.95 ^b	
CVP	62.06±2.65	67.47±2.37	68.40±3.47ab	
ADMD	65.73±1.81	67.24±2.21	68.10±2.10ab	
ADSD	63.95±1.45	68.38±2.54	73.25±2.51 ^a	
P-Value	0.572	0.507	< 0.001**	

**Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Red Blood Cell (RBC)

In CVP group $(3.86\pm0.46 \text{ ml/mm}^3)$, upon diagnosis the mean \pm SD values of RBC (million/microliter) was found to be significantly lower (p<0.01) than control group $(6.66\pm0.57 \text{ million/microliter})$ on day 0. Same was the case for ADMD group $(3.91\pm0.83 \text{ million/microliter})$ and ADSD group $(3.49\pm0.76 \text{ million/microliter})$. CVP Group values showed significant (p<0.01) increase upon treatment $(\text{day}14:4.98\pm0.57 \text{ million/microliter})$, day 28: $7.07\pm0.74 \text{ million/microliter})$. Similar trend was seen in both the remaining

treatment groups ADMD (day 14: 4.49±0.60 million/ microliter, day28: 4.80±0.50 million/microliter) and group ADSD (day14: 4.81±0.70 million/microliter, day 28: 6.55±0.62 million/microliter). On day 14 of treatment, mean ± SD values of RBC were lowest in ADMD group (4.49±0.60 million/microliter), followed by ADSD group (4.81±0.70 million/microliter) and CVP group (4.98±0.57 million/ microliter). On day28, the mean \pm SD values of CVP group (7.07±0.74 million/microliter) was the highest followed by ADSD group (6.55±0.62 million/microliter). They both varied significantly (p<0.01) compared to healthy Control group (6.80±.52). On day 28, ADMD group (4.80±0.50 million/ microliter) showed value higher than that of the value of 14 day (4.49±0.60 million/microliter) of the same group which indicating slow recovery. The findings are supported by the study of Jergens, et al. (2014) [19], Allenspach, et al. (2016) [1] and Craven, et al. (2019) [12]. Studies with herbs significantly impacting RBC levels, their ability to reduce gut inflammation and improve overall gastrointestinal health can indirectly promote better RBC production by addressing the underlying issues in dogs with IBD was simulated with findings of *Kumar*, et al (2016) [23].

 $\begin{tabular}{ll} \textbf{Table 7:} Effect of the different treatments on RBC \\ (million/microliter), (Mean <math>\pm$ SD) of different four groups of dog

Red Blood Corpuscles (RBC)			
Treatment	0 days	14 days	28 days
Control	6.66±.57 ^a	6.91±.38 ^a	6.80±.52a
CVP	3.86±.46 ^b	4.98±.57 ^b	7.07±.74 ^a
ADMD	3.91±.83 ^b	4.49±.60 ^b	4.80±.50 ^b
ADSD	3.49±.76 ^b	4.81±.70 ^b	6.55±.62a
P-Value	< 0.001**	< 0.001**	< 0.001**

**Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-White Blood Cells (WBC)

On day 0, the mean \pm SD values of WBC (cells per microliter) of CVP group (17.05±0.85 cells per microliter), ADMD group (17.45±1.15 cells per microliter) and ADSD group (17.60±1.39 cells per microliter) were higher significantly (p < .01) than that of the healthy Control group (10.17±2.39 cells per microliter). All treatment group values followed same trend of decrease significantly (p<.01) from day 0 to day14 and from day14 to day28: CVP group (day 0: 17.05±0.85 cells per microliter, day14: 14.96±0.73 cells per microliter, day 28:12.96±1.00 cells per microliter), ADMD group (day 0:17.45±1.15 cells per microliter, 14:16.23±1.07 cells per microliter, day 28:15.04±0.36 cells per microliter) and ADSD group (day 0:17.60±1.39 cells per microliter, day 14:15.51±1.26 cells per microliter, day 28 :13.09±1.13 cells per microliter). Upon treatment on day 28, the mean ±SD values of CVP group (12.96±1.00 cells per microliter) was the lowest value followed by the values of ADSD group (13.09±1. 13 cells per microliter) and ADMD group (15.04±0.36 cells per microliter). On day 28, the values of all three treatment groups CVP (12.96±1.00 cells per microliter), ADSD group (13.09±1.13 cells per microliter) and ADMD group (15.04±0.36 cells per microliter) lied significantly (p<.01) at the same range of healthy Control group (10.47±2.37 cells per microliter) which indicating the effectiveness of the treatment. The combination of metronidazole, tylosin, and prednisolone in IBD management aims to reduce gastrointestinal inflammation, which often leads to a normalization or reduction of elevated WBC counts,

especially as inflammation subsides, similar observation was made by *Allenspach*, *et al.* (2016) [1], *Dandrieux* (2016) [13] and *Craven*, *et al.* (2019) [12]. The herbal preparation used this trial are known for their anti-inflammatory, antioxidant, and antimicrobial properties, which can influence white blood cell (WBC) counts and overall gastrointestinal health which corroborated with the findings of *Sharma*, *et al.* (2015) [31], *Sahu*, *et al.* (2017) [34] and *Balakrishnan*, *et al.* (2018) [4].

Table 8: Effect of different treatments on WBC (per microliter), (Mean \pm SD) of different four groups of dog

White Blood Corpuscles (WBC)			
Treatment	0 days	14 days	28 days
Control	10.17±2.39 ^b	10.30±2.65 ^b	10.47±2.37 ^b
CVP	17.05±.85a	14.96±.73a	12.96±1.00a
ADMD	17.45±1.15 ^a	16.23±1.07 ^a	15.04±.36 ^a
ADSD	17.60±1.39a	15.51±1.26 ^a	13.09±1.13 ^a
P-Value	< 0.001**	< 0.001**	< 0.001**

^{**}Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Neutrophil (NEU)

The data shows the mean \pm SD values of Neutrophil (neutrophils per microliter) on day 0, 14 and 28 of the control and three treatment groups. On day 0, CVP group (76.50 \pm 1.64 neutrophils per microliter), ADMD group

(73.00±1.41 neutrophils per microliter) and ADSD group (76.16±1.60 neutrophils per microliter), showed greater values compared to control group (71.16±2.04 neutrophils per microliter), but the values of respective group are not significant. CVP Group and ADSD group showed major decrease from day 0 (CVP group: 76.50±1.64 neutrophils per microliter, ADSD group: 76.16±1.60 neutrophils per microliter) today14 (CVP group: 71.16±1.47 neutrophils per microliter, ADSD group: 72.16±1.32 neutrophils per microliter). But from day 0 to day 14, ADMD group showed slight decrease (day 0: 73.00±1.41 neutrophils per microliter and day 14: 71.66±1.63 neutrophils per microliter) but not significant. From day14 to day 28, in comparison with the healthy Control group value (70.83±1.94 neutrophils per microliter), CVP group and ADSD group showed a significant (p<0.01) decrease in value (CVP group: 67.33±2.33 neutrophils per microliter, ADSD group: 69.16±.75 neutrophils per microliter) whereas on the same day ADMD group showed significant (p<0.01) higher value (72.00±.89 neutrophils per microliter). McCarthy & Lascelles (2018) [25] and Craven, et al. (2019) [12] highlighted that dog receiving allopathic management for IBD indicating an improvement in clinical signs. Research by Bhattacharyya, et al. (2015) [8], Awasthi, et al. (2016) [3], and Kumar, et al. (2018) [22] indicates that the herbal management can significantly reduce inflammation markers, suggesting a decrease in neutrophil activation in inflammatory conditions.

Table 9: Effect of the different treatments on Neutrophils (per microliter), (Mean ± SD) of different four groups of dog

Neutrophils			
Treatment	0 days	14 days	28 days
Control	71.16±2.04 ^b	72.33±2.160	70.83±1.94 ^{ab}
CVP	76.50±1.64 ^a	71.16±1.47	67.33±2.33°
ADMD	73.00±1.41 ^b	71.66±1.63	72.00±.89a
ADSD	76.16±1.60 ^a	72.16±1.32	69.16±.75 ^b
P-Value	0.043	0.628	0.001**

^{**}Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Lymphocyte (LYM)

The data represents the mean \pm SD values of lymphocytes (%). On day 0, CVP group (16.16±2.31%), ADMD group (17.83±2.04%) and ADSD group (14.83±1.94%) had values significantly (p<0.01) lower than that of the healthy Control group (21.00±2.75%). After treatment CVP group (day 0:16.16±2.31%, day 14:23.66±2.25%), ADMD group (day 0:17.83±2.04%, day14:20.00±1.67%) and ADSD group (day 0:14.83±1.94%, day14:20.83±1.94%) showed significant (p<0.05) increase from day 0. On day14 of treatment, CVP group (23.66 \pm 2.25%) showed significantly (p<0.05) higher values than Control group (21.00±2.75%). Whereas on day 14 of treatment, ADMD group (20.00±1.67%) and ADSD group $(20.83\pm1.94\%)$ still showing significantly (p<0.05) lower value compared to healthy Control group (21.00 \pm 2.75%). On day 28 of treatment, CVP group (28.16±2.13%) and ADSD group (25.16 \pm 1.16%) showed mean \pm SD values to be significantly (p<0.01) higher than healthy Control group (23.33±2.42%) and on the same day, the value of ADMD group (19.16 \pm 1.72%) is still lower significantly (p<0.05) than Healthy Control group (23.33±2.42%). Metronidazole, tylosin, and prednisolone are frequently used in combination to manage IBD in dogs. Each of these drugs contributes to reducing lymphocyte counts, either through direct immunosuppressive action or by controlling inflammation, observed by Allenspach, et al. (2016) [1], German, et al.

(2017) [16] and *Pereira*, *S.*, *et al.* (2018) [30]. The combined use of herbal treatments shows promise for modulating lymphocyte activity, which is beneficial in controlling inflammation and immune deregulation in dogs with IBD, the findings are simulated with the report of *Sharma*, *et al.* (2015) [31], *Srinivasan*, *et al.* (2016) [38], *Patil*, *et al.* (2017) [28].

Table 10: Effect of the different treatments on LYM (%) (Mean \pm SD) of different four groups of dog

Lymphocytes			
Treatment	0 days	14 days	28 days
Control	21.00±2.36a	21.00±2.75ab	23.33±2.42 ^b
CVP	16.16±2.31 ^b	23.66±2.25a	28.16±2.13a
ADMD	17.83±2.04ab	20.00±1.67 ^b	19.16±1.72°
ADSD	14.83±1.94 ^b	20.83±1.94ab	25.16±1.16 ^{ab}
P-Value	< 0.001**	0.048*	< 0.001**

*Significant at 5% (p<0.05) level** Highly Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Eosinophil (EOS)

The table and figure represent that the mean \pm SD values of Eosinophils (%) on day 0, 14 and 28 of the healthy Control and three treatment groups. On day 0, ADMD group (4.66 \pm .81%), ADSD group (4.83 \pm .98%) showed values significantly (p<0.01) greater than Control group

(3.50 \pm .54%). But CVP group showed gradual decrease (significant at p<0.01) from day 0 (2.33 \pm 1.03%) to14 and from14 (1.16 \pm .75%) to 28 (0.83 \pm .40%). On day14 of treatment, ADMD group (4.16 \pm 1.16%) and ADSD group: (4.00 \pm 1.09%) showed significant (p<0.01) higher value than that of CVP group (1.16 \pm .75%). On day 28, the same pattern of alteration (significant at p<0.01) were observed among Control group and all three group values (Control group: 2.33 \pm .51%, CVP group: 83 \pm .40%, ADMD group: 4.33 \pm .81% and ADSD group: 3.33 \pm .51%). On day 28, it is also evidenced that the value of CVP group (.83 \pm .40%) was significantly (p<0.01) lower than that of the other three

groups indicating the efficacy of the intervention. The combination of metronidazole, tylosin, and prednisolone is effective in reducing eosinophil counts in dogs with IBD by controlling inflammation and modulating immune responses, similar study was in confirmation with the findings of *Allenspach*, et al. (2016) [1], *German*, et al. (2017) [16] and *Pereira*, et al. (2018) [30]. The use of herbal treatments shows promise in reducing eosinophil-related inflammation in dogs with IBD, primarily through their anti-inflammatory and immune modulatory effects, similar study was confirmed by *Sharma*, et al. (2015), *Srinivasan*, et al. (2016) [38] and *Kumar*, et al. (2018) [22].

Table 11: Effect of different treatments on EOS (%) (Mean ± SD) of four different groups of dog

Eosinophils			
Treatment	0 days	14 days	28 days
Control	3.50±.54 ^{ab}	2.83±.75a	2.33±.51°
CVP	2.33±1.03 ^b	1.16±.75 ^b	.83±.40 ^d
ADMD	4.66±.81 ^a	4.16±1.16 ^a	4.33±.81a
ADSD	4.83±.98 ^a	4.00±1.09a	3.33±.51 ^b
P-value	< 0.001**	< 0.001**	< 0.001**

^{**}Highly Significant at 1% (*p*<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Monocyte (MONO)

The mean \pm SD values of Monocytes (%) on day 0, 14 and 28 of the healthy Control and three treatment groups, on day 0, among the three treatment groups, the value of CVP group $(5.00\pm.89\%)$ was highest than that of ADMD group $(4.50\pm1.04\%)$ and ADSD group $(4.17\pm.75\%)$ which is not very significant. Gradual decrease from day 0 to day 14 were seen in case of CVP group (day 0: $5.00\pm.89\%$, day 14: 4.00 ± 0.89) and ADSD group (day 0: $4.17\pm0.75\%$, day 14: 3.00 ± 0.63) and ADMD group (day 0: $4.50\pm1.04\%$, day $14:4.17\pm0.42\%$). But On day 28 of treatment, ADSD group: $(2.33\pm0.52^{b\%})$ and CVP group (3.67 ± 0.52) showed significant (p<0.01) lower value than that of ADMD group

(4.50±0.83%). On day 28, it is also evidenced that the value of CVP group (3.67±0.52%) was almost nearer to the value of Control group (3.50±1.38) in comparison to other treatment groups. The allopathic treatments have shown significant impacts on immune modulation, gut microbiota, and inflammation markers, including monocyte activity which is found in the studies of *Cassmann*, *et al.*, 2016 [9] and *Peiravan*, *et al.*, 2024 [29]. The herbal medications have unique bioactive compounds that reduced inflammatory processes, support gut health, and modulate immune cell activity, including that of monocytes, corroborated with the studies of *Choudhary*, *et al.* (2018) [10], *Shashidhara & Mohanty* (2016) [36] and *Patel* (2019) [27].

Table 12: Effect of the different treatments on Monocyte (%) (Mean ± SD) of different four groups of dog

Monocytes				
Treatment	0 days	14 days	28 days	
Control	4.33±1.36	3.83±1.17	3.50 ± 1.38^{ab}	
CVP	5.00±0.89	4.00±0.89	3.67 ± 0.52^{ab}	
ADMD	4.50±1.04	4.17±0.42	4.50±0.83a	
ADSD	4.17±0.75	3.00±0.63	2.33±0.52b	
P-Value	0.553	0.102	0.004**	

^{**}Highly Significant at 1% (p<0.01) level; N.B: Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Platelet (PLT)

The result of different treatments on the Platelet count of groups CVP, ADMD and ADSD. On day 0, group CVP (260.33±19.82 platelet per microliter), group ADMD (200.17±24.02 platelet per microliter) and group ADSD (271.83±10.61 platelet per microliter) showed significantly (*p*<0.01) lower values compared to control (306.67±17.63 platelet per microliter). However, after treatment significant increase in platelet was observed in group CVP (day 0:260.33±19.82 platelet per microliter, day 14:298.83±25.22 platelet per microliter, day 28:336.50±23.48 platelet per microliter), group ADMD (day 0:200.17±24.02 platelet per microliter, day14: 220.83±23.11 platelet per microliter, day 28:235.66±29.76 platelet per microliter) and Group ADSD (day 0:271.83±10.61 platelet per microliter, day 14: 313.83±15.77 platelet per microliter, day 28: 348.33±17.22

platelet per microliter) all followed the similar trend of significant increase in mean ± SD values of platelets from day 0 onwards. On day 28, value of ADSD group (348.33±17.22 platelet per microliter) and CVP group (336.50±23.48 platelet per microliter) were almost in the same range of that of the healthy Control group (369.83±12.62 platelet per microliter). Combination of metronidazole, tylosin, and prednisolone primarily reduces inflammation, which indirectly helps normalize platelet counts, the findings are corroborated with the study findings of *Basson*, *et al.* (2016) ^[5] and *Khandelwal*, *et al.* (2018) ^[21]. The herbal compounds have shown potential in modulating platelet counts in dogs with inflammatory conditions such as IBD, also reported by the study of *Sharma*, *et al.* (2015) ^[31], *Srinivasan*, *et al.* (2016) ^[38], *Patil*, *et al.* (2017) ^[28].

Table 13: Effect of the different treatments on PLT (platelet per microliter), (Mean \pm SD) of different four groups of dog

Platelets						
Treatment	0 days	14	days	28	days	
Control	306.67±17.63a	343.00±	12.19 ^a	369.83±	12.62a	
CVP	260.33±19.82 ^b	298.83±25.22 b		336.50±23.48 ^a		
ADMD	200.17±24.02°	220.83±	23.11 ^c	235.66±	29.76 ^b	
ADSD	271.83±10.61 ^b	313.83±15.77ab		348.33±	17.22a	
P-Value	< 0.001**	< 0.001**		< 0.001**		

^{**}Significant at 1% (p<0.01) level; Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Hematological Parameters-Erythrocyte Sedimentation Rate (ESR)

The effect of the different treatments on ESR (mm/hr) of the affected animals. On day 0, CVP group (36.16±3.31 mm/hr), ADMD group (34.33±2.50 mm/hr) and ADSD group $(32.83\pm2.04 \text{ mm/hr})$ showed significantly (p<0.01) higher values compared to the values of healthy Control group (18.50±6.83 mm/hr). CVP Groups (day 0: 36.16±3.31 mm/hr; day14:31.00±3.57 mm/hr; day28:25.00±2.52 mm/hr), ADMD group (day 0: 34.33±2.50 mm/hr; day14:32.00±2.00 mm/hr; day 28:29.50±1.51 mm/hr) and ADSD group (day 0:32.83±2.04 mm/hr; day14:27.66±2.33 mm/hr; day 28 :22.66±1.96 mm/hr) showed similar pattern of decrease (significantly at p<0.01) from day 0 to day 14 and from day 14 to day 28. On day 28, values of ADSD group (22.66±1.96 mm/hr) and CVP group (25.00±2.52 mm/hr) were seem to be more nearer to that of the Control group (16.00±3.89 mm/hr) than the value of ADMD group (29.50±1.51 mm/hr) (significant at p<0.01). The use of metronidazole, tylosin, and prednisolone in dogs with IBD significantly affects ESR levels and a decreasing ESR may indicate successful management of inflammation, while persistent elevations could suggest inadequate response or complications. The findings of this study is supported by the study findings of Farah (2018) [15], Sullivan, et al., (2018) [40], Holt, et al., (2019) [18], Cohen, (2020) [11]. The combination of these herbal remedies could potentially help manage IBD in dogs by reducing systemic inflammation, as indicated by ESR levels corroborated with the findings of Ranjan, et al., (2020) [33], Shukla, et al., (2020) [37] and Hassan (2021) [17].

Table 14: Effect of the different treatments on ESR (mm/hr), (Mean ± SD) of different four groups of dog

Erythrocyte Sedimentation Rate					
Treatment	0 days	14 days	28 days		
Control	18.50±6.83 ^b	15.50±3.78 ^b	16.00±3.89°		
CVP	36.16±3.31 ^a	31.00±3.57a	25.00±2.52b		
ADMD	34.33±2.50 ^a	32.00±2.00a	29.50±1.51a		
ADSD	32.83±2.04a	27.66±2.33a	22.66±1.96 ^b		
P-Value	< 0.001**	< 0.001**	< 0.001**		

^{**}Significant at 1% (p<0.01) level; N.B. Different superscripts (column wise) differ significantly according to Tukey's HSD test for multiple comparisons.

Conclusion

The study demonstrated that both conventional allopathic therapy and Ayurveda interventions, particularly at standard doses, effectively improved clinical, physiological, and haematological parameters in dogs with Inflammatory Bowel Disease (IBD). Physiological parameters-temperature, pulse, and respiration gradually normalized in affected dogs, with CVP and ADSD groups showing values comparable to healthy controls by day 28. Haematological improvements,

including haemoglobin, RBC, PCV, MCV, WBC, and platelet counts, reflected recovery from inflammation-induced alterations, while ESR values indicated significant reduction in systemic inflammation. Herbal preparations exhibited anti-inflammatory, antioxidant, and immune modulatory effects, contributing to stabilization of neutrophil, lymphocyte, eosinophil, and monocyte profiles. Overall, the findings suggest that veterinary Ayurveda, particularly at standard doses, can serve as a promising adjunct or alternative to conventional therapy in managing canine IBD, promoting recovery of physiological homeostasis, haematological health, and immune modulation, thereby enhancing overall wellbeing and quality of life in affected dogs.

Conflict of Interest

Not available

Financial Support

Not available

Reference

- 1. Allenspach K. The treatment of chronic enteropathies in dogs. J Vet Intern Med. 2016;30(1):4-11.
- 2. Allenspach K, Simpson KW, Jergens AE. Clinical presentation and diagnosis of canine inflammatory bowel disease. Vet J. 2018;235:25-34.
- 3. Awasthi K, Singh A, Dubey NK, Kumari A. *Aegle marmelos*: A review on its pharmacological and therapeutic potential. J Ethnopharmacol. 2016;200:1-16.
- 4. Balakrishnan P, Arumugam S, Thangavel P, Sundar K, Rajesh S. Therapeutic potential of *Punica granatum* and its active constituents in controlling inflammatory bowel diseases. Front Pharmacol. 2018;9:257.
- 5. Basson A, Stokes CR, Smith PM. The effect of antibiotics and probiotics on gut health in dogs with IBD. Vet Ther. 2016;17(2):147-55.
- 6. Bhan JC, Singh S. Medicinal plants and their uses in veterinary medicine. Indian J Anim Res. 2015;49(5):559-67.
- 7. Bhatia M, Ahuja V, Shandilya UK. Ethnopharmacological and phytochemical overview of the medicinal plants used in the treatment of inflammatory bowel disease. J Ethnopharmacol. 2016;190:116-26.
- 8. Bhattacharyya S, Maji S, Chatterjee D. Anti-inflammatory and analgesic activity of *Cyperus rotundus* Linn. Indian J Pharm Sci. 2015;77(1):44-50.
- 9. Cassmann E, White R, Atherly T, Wang C, Sun Y, Khoda S. The impact of metronidazole on gut microbiota and immune responses. PLOS One. 2016:11(1):e0147464.
- 10. Choudhary R, Gupta S, Malhotra P. Anti-inflammatory and immunomodulatory effects of *Aegle marmelos* and *Cyperus rotundus* in experimental colitis. J Vet Sci Technol. 2018;12:115-23.
- 11. Cohen SS, Crump CD, Marcellin BSE, Simson RE, Henley JHRD, P. Effects of metronidazole on liver enzyme activities in dogs. J Vet Intern Med. 2020;34(1):183-90.
- 12. Craven M, McCready J, Tivers M, O'Rourke S. Diagnosis and management of gastrointestinal diseases in dogs and cats. Vet Clin North Am Small Anim Pract. 2019;49(1):1-25.
- 13. Dandrieux JRS. Inflammatory bowel disease versus chronic enteropathy in dogs: Are they one and the same?

- J Small Anim Pract. 2016;57(11):589-99.
- 14. Dey S, Mandal SC, Chakraborty A. Review on *Cyperus rotundus*: Ethnomedicinal, phytochemical and pharmacological aspects. Int J Green Pharm. 2016;10(2):80-8.
- 15. Farah H, De Boer R. The role of inflammatory markers in veterinary medicine: Focus on ESR and CRP. Vet Clin North Am Small Anim Pract. 2018;48(3):473-88.
- 16. German AJ, Hall EJ, Day MJ. Inflammatory bowel disease in dogs: Pathogenesis, clinical signs, diagnosis, and treatment. Vet Clin North Am Small Anim Pract. 2017;48(1):57-75.
- 17. Hassan M, Hossain MM. *Cyperus rotundus*: A comprehensive review of its phytochemical and pharmacological potential. Pharmacogn Rev. 2021;15(30):94-101.
- 18. Holt DE, Berghoff N, Steiner JM, Suchodolski JS. The impact of tylosin on canine gastrointestinal health. Vet Med Sci. 2019;5(3):235-41.
- 19. Jergens AE, Crandell JM, Morrison JA, Deitz K, Pressel M, Ackermann MR. Comparison of oral prednisone and prednisone combined with metronidazole for induction therapy of canine inflammatory bowel disease. J Am Vet Med Assoc. 2014;245(12):1295-301.
- 20. Jain NC. *Schalm's Veterinary Hematology*. Philadelphia: Lea & Febiger; 1986.
- 21. Khandelwal S, Mehta RS, Sharma P, Singh A. Corticosteroid therapy in inflammatory conditions and its effects on blood parameters in canines. J Vet Intern Med. 2018;32(4):745-51.
- 22. Kumar A, Singh K, Kumar V. *Punica granatum*: A comprehensive review of its health benefits. J Nutr Biochem. 2018;58:65-82.
- 23. Kumar A, Singh R, Kumar S, Gupta A. Herbal remedies in veterinary medicine. J Ethnopharmacol. 2016;179:50-62.
- 24. Kumar S, Prakash D, Kumar A. *Holarrhena antidysenterica*: A review on its pharmacological and therapeutic potential. J Ethnopharmacol. 2017;201:45-59.
- 25. McCarthy R, Lascelles BDX. Anemia in dogs and cats: An overview of diagnosis and treatment. J Am Anim Hosp Assoc. 2018;54(1):1-12.
- 26. Nambiar M, Jaleel A, Pillai A, Sreelatha S. Phytochemical and pharmacological properties of *Punica granatum*: A review. J Pharmacogn Phytochem. 2018;7(1):80-4.
- 27. Patel S. *Holarrhena antidysenterica*: A potential phytomedicine for managing gastrointestinal diseases in animals. J Drug Deliv Ther. 2019;12(4):221-6.
- 28. Patil SD, Pansambal SS, Mehta SK, Waghmare MN. Therapeutic potential of *Holarrhena antidysenterica* in gastrointestinal and immune disorders. J Tradit Complement Med. 2017;7(4):409-416.
- 29. Peiravan A, Rinkardt N, Allenspach K. Updates to chronic inflammatory enteropathy management in dogs. Animals (Basel). 2024;14(5):681.
- 30. Pereira RS, Pinto JF, Gonçalves CLG, Oliveira JTS. The effect of corticosteroids on protein metabolism in dogs. Vet Clin Pathol. 2018;47(2):150-157.
- 31. Puri HS, Sharma A. Medicinal properties of *Aegle marmelos*. J Med Plants Res. 2015;9(5):50-58.
- 32. Raghavendra MR, Kumar RS. Traditional uses and pharmacological activities of *Holarrhena* antidysenterica: A review. Int J Pharm Sci Res. 2021;12(5):2575-2781.

- 33. Ranjan R, Kumar A, Jha SK, Ranjan N, Prasad K, Jha AK. *Punica granatum* L.: A review on its composition and health benefits. J Food Sci Technol. 2020;57(4):1363-1375.
- 34. Sahu R, Kumar A, Gupta A. Evaluating the effects of *Holarrhena antidysenterica* on intestinal health: Implications for veterinary medicine. J Ethnopharmacol. 2017;203:11-20.
- 35. Sharma A, Gupta R, Soni VK, Dubey NK. The role of *Cyperus rotundus* in modulating immune responses. Indian J Pharmacol. 2015;47(5):511-517.
- 36. Shashidhara S, Mohanty I. Therapeutic potential of *Punica granatum* in gastrointestinal diseases. Vet Herb J. 2016;23:47-53.
- 37. Shukla S, Kumar A, Shukla M, Yadav A, Agarwal A, Shukla P. *Holarrhena antidysenterica*: A review of its ethnomedicinal uses and pharmacological activities. Pharmacogn Rev. 2020;14(27):162-167.
- 38. Srinivasan R, Karthik K, Satheesh K, Prashanth SK, Parimelazhagan T. Immunomodulatory and anti-inflammatory properties of *Aegle marmelos* in autoimmune conditions. J Ethnopharmacol. 2016;180:59-65.
- 39. Suchodolski JS, Dowd SE, Wilke V, Jergens AE. Gut microbiome studies in canine inflammatory bowel disease. Vet Microbiol. 2021;254:109016.
- 40. Sullivan M, Crump CD, Bergh SHH, Olivieri JRB. Prednisolone effects on liver function in canines. Vet Rec. 2018;183(12):367-373.

How to Cite This Article

Pal A, Sarkar S, Dutta S, Biswas S. Comparative efficacy of veterinary Ayurveda over conventional allopathic practices on various physiological & hematological parameters in relation to IBD as complex digestive disorder in canine pets of India. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(10):231-238.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.