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Abstract 

Poultry farming is a significant sector in the agricultural industry, providing a vital source of protein for 

human consumption. However, the industry faces challenges from various viral diseases that can lead to 

significant economic losses and impact food security. In spite of Vaccination, Viral diseases include 

Avian Influenza (AI), Infectious bronchitis (IB), Infectious Bursal Disease (IBD) infectious 

laryngotracheitis (ILT), Newcastle disease (ND) and bacterial diseases such as Necrotic enteritis (NE) 

and avian pathogenic E. coli (APEC), and other diseases are common over the world. Understanding the 

mechanisms of viral entry and replication in avian cells is crucial for developing effective strategies to 

combat these diseases. Central to this understanding are the receptors present on avian cells, which play a 

pivotal role in the recognition and binding of viral pathogens. The identification and characterization of 

viral antigens associated with poultry viral diseases are critical for the development of effective vaccines 

and diagnostic tools. Understanding these antigens enables researchers to design targeted immunization 

strategies, improve disease management, and enhance the overall health of poultry populations. As the 

poultry industry continues to evolve, ongoing research into viral antigens and their interactions with the 

host immune system will be essential for combating viral diseases and ensuring food security. This study 

explores the crucial receptors in poultry that are significantly associated with various diseases by fetching 

previous studies in which (Sialic Acid Receptor, chCD44, specific cellular receptor(s) with viral 

envelope glycoprotein,, sialoglycoconjugates, Purinergic Receptors (PRs), Toll-Like Receptors 

(TLR1A), Sialic Acid Receptor, C-type lectin receptor, dectin-1, host glycosaminoglycans (GAGs),A 

family of variable lipoproteins (VlhA), cytadhesin molecule GapA and other cytadherence-related 

molecules such as CrmA extracellular matrix (ECM) proteins, Tva Receptor, Tvj Receptor glycoproteins 

(gB, gD, and gC) Receptor) are identified to be upregulated during infections with those diseases, also 

detecting common viral diseases using Rapid test and unveil the expression of P53 in identified diseases 

in broilers farms using spectrophotometry quantification procedure. Because of their roles in immune 

response, and potential applications in disease resistance and vaccine development. The analysis is based 

on the most recent and reliable scientific literature available. Quantitative analysis of p53 expression 

revealed a significant upregulation across all experimental groups relative to the control. The control 

group exhibited minimal basal levels of p53, whereas the IBD group demonstrated a moderate increase. 

Notably, the ND and IB groups showed marked elevations in p53 concentration, which were statistically 

significant (p<0.01 and p<0.001, respectively). The AI group displayed the highest expression level, 

with a highly significant difference compared to the control (p<0.001). The progressive increase in p53 

expression among the disease groups suggests a correlation between disease severity and activation of 

p53-dependent cellular stress responses. 

The study revealed that each disease is correlated with a specific receptor and P53 is overexpressed 

during infection in poultry. Future studies are recommended in this direction. 

 

Keywords: Sialic acid receptor, purinergic receptors (PRs), TLR1A, C-type lectin receptor, dectin-1, 

P53 
 

Introduction  

The poultry industry is a cornerstone of global food security, providing affordable protein in 

the form of eggs and meat. However, the industry faces constant threats from infectious 

diseases, many of which are exacerbated by immunosuppressive conditions. 
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Immunosuppression in poultry, defined as a dysfunction of 

the immune system leading to increased susceptibility to 

diseases, is often linked to specific receptors that mediate 

immune responses. Understanding these receptors is essential 

for developing disease-resistant poultry breeds, improving 

vaccine efficacy, and mitigating economic losses (Akter et al., 

2025; Milby-Blackledge, Farnell, Swaggerty, & Farnell, 

2025; Sayed et al., 2025; Yan et al., 2025; X. Zhang et al., 

2025) [3, 57, 72, 84]. 

Poultry diseases pose a significant challenge to the global 

poultry industry, which is a critical source of food protein and 

economic stability worldwide. The immune system of poultry, 

particularly the role of specific receptors, plays a pivotal role 

in disease resistance and susceptibility. 

 

Host recognition by the virus 

Unlike living cells, many viruses lack a plasma membrane or 

the structures necessary to sustain life. Some viruses consist 

of nothing more than an inert protein shell filled with DNA or 

RNA. To replicate, viruses need to enter a living cell that acts 

as a host, then commandeer the host's cellular machinery (An, 

Liu, Ren, Mo, & Zhou, 2025; Chen, Yu, Yan, Yuan, & He, 

2025) [84]. Viruses typically attach to cell-surface receptors on 

the target cell. For instance, the virus responsible for human 

influenza (flu) attaches exclusively to receptors on the 

membranes of respiratory system cells. Differences in the 

chemical makeup of the cell-surface receptors of different 

hosts mean that a virus that infects one species (e.g., humans) 

will not infect another species (e.g., chickens). In comparison 

to humans, though, viruses have tiny amounts of DNA or 

RNA, so viral reproduction can happen at lightning speed. 

Viral replication is error-prone, so mistakes will give rise to 

variants in newly replicated viruses; these variants could 

mean that the viral proteins that interact with receptors on the 

surface of host cells could evolve to be able to bind to 

receptors on a new host (Ilbagi, Kanakala, Masonbrink, 

Lozier, & Miller, 2025) [39]. These kinds of alterations occur 

spontaneously and frequently in the reproductive cycle of a 

virus, but the changes only matter if a virus with newly 

cultivated binding properties encounters a receptive host. This 

scenario can happen with influenza in situations in which 

animals and people are in close contact, such as poultry and 

swine farms. Once a virus has jumped to a new host, it can 

spread rapidly. Scientists keep a close eye on viruses they can 

observe for the first time (emerging viruses), hoping that 

monitoring may help prevent global infectious viruses (Roy 

et al., 2025) [71]. 

Enzyme-linked receptors, receptors are associated with an 

enzyme called a linked receptor that serves as a signal for the 

transport of calcium ions into the cell. In some cases, the 

receptor itself has an intracellular domain that acts as an 

enzyme. Other enzyme-linked receptor has a short 

intracellular domain that directly interacts with an enzyme 

(Chai et al., 2024) [15]. When a ligand binds the extracellular 

domain, a signal is transduced across the membrane to 

activate the enzyme. Turning on the enzyme sparks a series of 

events inside the cell that finally trigger a response. Entry 

receptors result in virus entry by endocytosis/pinocytosis or 

by inducing fusion/penetration. The effect of this binding 

cannot be undone (T. Li et al., 2024; Mukae, Yoshii, & 

Oishi, 2024) [59]. They have usually been designated as "co-

receptors". Entry receptors are typically less accessible for the 

virion, which eschews this issue by first binding to adhesion 

receptors, which increase the likelihood of binding to the 

entry receptor. For bacterial viruses, binding to the entry 

receptor is termed irreversible adsorption, according to 

experimental data (Fadaee, Mahrooghi, Lahouty, Oskouei, & 

Nezhadi, 2025) [29]. 

 

Viral attachment to host entry receptor 

A specific region of DNA in chickens associated with disease 

resistance after scientists successfully identified the DNA 

region in the chickens for the disease resistance. However, 

breeding companies will select animals that look similar with 

a higher general disease resistance, which results in lower 

antibiotic use and higher animal welfare. One region in the 

chicken's DNA accounts for a large part of the difference in 

potential disease resistance between the birds, this region of 

DNA carries one of the key sensors for priming the immune 

system, which could explain why some chickens get sick and 

others not (Ophelie, Christelle, Maxime, Romuald, & Joelle, 

2024) [63]. Poultry housing systems can provide a hotbed of 

pathogen spread, while the reduced use of antibiotics and the 

transition to group housing of layer chickens have increased 

the demand for a more resilient layer chicken. In an earlier 

study, scientists discovered that birds have natural antibodies 

to inhibit and ward off further infection in the body, but those 

antibodies also sound the alarm and spark the actions of other 

immune system components. Earlier studies have 

demonstrated that the natural antibody (Nab)levels are higher 

in layers that showed an increased chance of survival, and are 

heritable and can therefore be manipulated through breeding 

(Cho et al., 2025) [21]. 

 

Key Poultry Receptors and Their Roles in Disease 

Susceptibility 

1. Toll-Like Receptors (TLRs) 

Toll-like receptors (TLRs) are a family of pattern recognition 

receptors (PRRs) that play a critical role in the innate immune 

system by recognizing pathogen-associated molecular 

patterns (PAMPs). In chickens, TLRs are vital for initiating 

immune responses against bacterial, viral, and fungal 

infections. The region had several genes in it. At the DNA 

level, it is very challenging to ascertain the difference that 

accounts for the difference in NAb level. “It’s likely this 

difference is driven by the Toll-like receptor 1A (TLR1A) 

gene, which makes this our primary candidate. TLR1A is a 

member of the TLR family, which is an important component 

of the immune system. This is a family of receptors, a sort of 

sensor, that detects common features on pathogens. “They 

recognize some pieces that are on many bacteria or viruses. 

Donc its sensors have a very wide function. But the link to 

NAb is new. Diagnostics and immunogenicity are both 

highly dependent on antigens, especially the VP2 protein, of 

birnaviruses. Infectious pancreatic necrosis virus (IPNV) and 

infectious bursal disease virus (IBDV) are members of the 

group of viruses known as birnaviruses; these notable 

differences in antigenic properties are important for strain 

identification and differentiation. The next paragraphs expand 

on the pertinence of the main defined features of birnavirus 

antigens (Nihashi, Ono, Kagami, & Takaya, 2019) [61]. In 

Poultry Diseases, TLR4: TLR4 is one of the most studied 

receptors in poultry immunology. It recognizes 

lipopolysaccharides (LPS) from Gram-negative bacteria, 

triggering a cascade of immune responses. Research has 

shown that TLR4 polymorphisms are associated with 

variations in disease resistance among chicken breeds. TLR2 

and TLR7: These receptors are involved in recognizing 

bacterial lipopeptides and viral single-stranded RNA, 

respectively. Their activation leads to the production of pro-
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inflammatory cytokines, which are crucial for controlling 

infections such as avian influenza and Newcastle disease. 

Applications in Genetic studies on TLR4 have paved the way 

for breeding disease-resistant poultry lines. For example, 

selective breeding programs targeting TLR4 variants have 

shown promise in reducing susceptibility to bacterial 

infections. And TLR-based adjuvants are being developed to 

enhance the efficacy of vaccines against infectious diseases in 

poultry. 

 

2. Cellular Receptors for Avian Leukosis Virus (ALV) 

 Avian leukosis virus (ALV) is a tumor-inducing retrovirus 

that affects chickens. The virus enters host cells through 

specific cellular receptors, making these receptors critical 

determinants of susceptibility. In Poultry Diseases, Tva 

Receptor: Subgroup A ALVs utilize the Tva receptor, a 

member of the low-density lipoprotein (LDL) receptor family, 

for cell entry. Variations in the Tva receptor gene can 

influence susceptibility to ALV.Tvj Receptor: Subgroup J 

ALVs use the Tvj receptor, which belongs to the butyrophilin 

family. This receptor has been linked to the wide host range 

of ALV-J, particularly in Chinese local chicken breeds (J. 

Chen et al., 2025; Galikova et al., 2025; X. Zhang et al., 

2025) [84, 31]. Identifying and modifying receptor variants 

through genetic engineering can lead to the development of 

ALV-resistant chicken lines. For instance, receptor-specific 

mutations have been proposed as a strategy to block virus 

entry (Shin, Kim, Woo, Park, & Han, 2025) [74]. 

 

3. Pattern Recognition Receptors (PRRs) 

In addition to TLRs, other PRRs, such as nucleotide-binding 

oligomerization domain (NOD)-like receptors and C-type 

lectin receptors, are also crucial for pathogen recognition and 

initiation of immune responses. Purinergic receptors (PRs) 

have been identified as novel therapeutic targets for a variety 

of viral infections, including herpesviruses, necessitating their 

evaluation in relation to Marek's disease (MD) (de Geus & 

Vervelde, 2013) [23]. MD is a herpesvirus-induced malignancy 

in chickens and an economically important pathogen in the 

poultry industry (Boodhoo, Blake, Fazel, Shoja Doost & 

Sharif, 2025; Bu et al., 2025) [11, 13]. MD is caused by the 

disease-modifying viral load virus (MDV), which has a life 

cycle similar to that of the human varicella-zoster virus; the 

virus is secreted from infected skin epithelial cells and enters 

the host through the respiratory tract. This report investigates 

natural MD (MD) infection in MD-resistant White Leghorn 

chickens (WL) and MD-susceptible Pure Columbia chickens 

(PC), and investigates the PR response to disease progression. 

Samples from infected chickens, either without clinical signs 

of MD (infected) or with clinical disease (sick), included 

whole lung lavage cells (WLLC) and liver tissue. RNA was 

extracted and analyzed by RT-qPCR using gene-specific 

primers targeting P1, P2X, and P2Y members of the PR 

family. PR signaling is a potentially relevant clinical and 

research aspect of MDV replication (Akbar, Fasick, Ponnuraj, 

& Jarosinski, 2023) [1] and MD pathology. The NDV envelope 

contains two glycoproteins that mediate viral entry: 

hemagglutinin-neuraminidase (HN) and fusion protein (F). 

HN is a receptor-binding protein that recognizes and binds to 

sialic acid-glycoconjugates on the cell surface and also 

exhibits receptor-cleaving (sialidase) activity. These receptors 

are involved in the recognition of intracellular pathogens and 

fungal infections. For example, NOD-like receptors recognize 

bacterial peptidoglycans, leading to the activation of 

inflammasomes and the production of interleukin-1β (IL-1β), 

a key proinflammatory cytokine. 

 

4. Main Newcastle Disease Virus antigens 

1. Hemagglutinin-Neuraminidase (HN) Protein(AG) 

It is a major ND antigen that induces the generation of 

neutralizing antibodies. It is commonly the Target of vaccines 

because a major target of the immune response, facilitating 

the attachment of the virus to host cells by binding to sialic 

acid receptors, and promoting the spread of the virus by 

cleaving sialic acid residues from infected and neighboring 

cells. 2. Fusion (F) Protein3.Nucleocapsid (N)Protein:4. 

Matrix (M) Protein:5. Phosphoprotein (P): Avian influenza 

Antigens Proteins and other elements of avian influenza are 

central to viral entry into host cells and to the immune 

response. The antigens include. Hemagglutinin (HA) Protein. 

One of the key surface proteins of the virus. Present in 18 

subtypes (H1 to H18) in influenza viruses. Function: 

Attaches the virus to host cells by binding sialic acid 

receptors on the surface of the cell. Mediates the fusion of the 

viral envelope with the host cell membrane, thereby allowing 

the virus to enter host cells. Its Immunological Significance is 

a major antigen that induces the synthesis of neutralizing 

antibodies. The virus is typed according to this protein (H5, 

H7, etc.), with H5 and H7 belonging to highly pathogenic 

avian influenza (HPAI). 2. Neuraminidase (NA), the second 

major surface protein. Influenza viruses exist in 9 subtypes 

(N1 to N9). Name: Neuraminidase of the virus Train of 

Thought: 

To propagate the virus, it cleaves sialic acid residues on the 

cell surface, which hinders virus clumping. Immunological 

Significance: Target of neutralizing antibodies that block 

viral transmission. Combined with HA to differentiate viral 

strains (E.g., H5N1, H7N9) 3. Accessory and Internal 

Proteins HA and NA are the main antigens, but other viral 

proteins also play a role in immunity and diagnostics: 

Nucleoprotein (NP): Encases the viral RNA. Targeted for use 

in diagnostic assays such as ELISA or PCR, Matrix Proteins 

(M1 and M2): Structural support to the virus. Some antiviral 

drugs target M2. Polymerase proteins (PB1, PB2, PA): 

Comparing the proteins encoded by the viral polymerase 

genes lijnen viral assembly and replication in host cells. 

Crucial in shaping viral evolution and mutations. For 

relevance to classification and epidemiological significance: 

Highly Pathogenic Avian Influenza (HPAI), e.g., H5N1 and 

H7N9 strains with specific HA and NA subtypes causing high 

poultry mortality. Low Pathogenic Avian Influenza (LPAI): 

This type only causes mild or no symptoms, but under certain 

conditions, it can mutate to the highly pathogenic kind. 

Application in Vaccine Development The vaccines of AIV are 

essentially developed by targeting HA and NA proteins, 

whereupon, due immune response is implemented. Vaccines 

are adjusted based on circulating strains to maximize their 

effectiveness. 
 

6-Infectious laryngotracheitis antigen ILT 

The herpes virus causes a contagious viral disease that infects 

poultry (Kang, Brocklehurst, Haskell, Jarvis, & Sandilands, 

2025) [43]. Alphaherpes virus 1 Glycoproteins: The 

glycoproteins of the viral envelope are by far the most 

immunogenic antigens. These are involved in viral 

attachment, entry, and interaction with the host immune 

system. The key glycoproteins include. gB (Glycoprotein B): 

Required for viral penetration and fusion with the host cell 

membrane. One key target for neutralizing antibodies. gC 

(Glycoprotein C): Involved in viral attachment to its host 

cells, Key for triggering the immune response. gD 

(Glycoprotein D): Essential for viral attachment and entry. 
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Used as a strong antigen for use in development of 

recombinant vaccines. gE (Glycoprotein E): Tegument 

Proteins: Located between the viral envelope and capsid, 

contributing to viral replication and immune modulation. 

Examples: VP8 and VP16. Capsid Proteins: They also 

provide structural stability to the virus and serve as a target 

for recognition by the host immune system. Major Capsid 

Protein (MCP): Essential for the assembly of the viral capsid 

and plays a role in immune recognition. Immediate Early 

Proteins: These are regulatory proteins that govern viral 

replication and immune evasion (Aydin et al., 2025; Chacon 

et al., 2025; Cui et al., 2025) [6, 14, 22]. 

 

7. Infectious bursal disease virus (IBDV), which targets 

bursa B lymphocytes. 

IBDV causes severe immunosuppressive disease in chickens 

and causes significant economic losses to the poultry industry. 

To date, the functional receptors to which IBDV binds and its 

ability to enter host cells remain unknown. In this study, we 

used mass spectrometry to identify host proteins in chicken 

bursal lymphocytes that interact with VP2. We identified the 

chicken transmembrane protein cluster of differentiation 44 

(chCD44) and examined its interaction with the IBDV major 

capsid protein VP2. Overexpression and knockdown 

experiments demonstrated that chCD44 promoted IBDV 

replication. Furthermore, soluble chCD44 and anti-chCD44 

antibodies blocked viral binding. Receptor reconstitution 

results demonstrated that chCD44 overexpression conferred 

viral binding to uncontrolled cells. Importantly, although 

IBDV was unable to replicate in uncontrolled cells 

overexpressing chCD44, the virus was able to enter 

uncontrolled cells with the help of chCD44. Our results 

demonstrate that chCD44 is a cellular receptor for IBDV, 

facilitating viral binding and entry to target cells through 

interaction with the IBDV VP2 protein. Infectious bursal 

disease virus (IBDV) causes a severe immunosuppressive 

disease in chickens, resulting in significant economic losses 

for the poultry industry. However, the specific mechanisms by 

which IBDV invades host cells remain incompletely 

understood. Chicken CD44 chCD44 likely facilitates IBDV 

binding to and entry into B lymphocytes, thereby acting as a 

cellular receptor for IBDV. With the emergence of viral 

variants, avian influenza (AI), avian influenza (IBD), and 

inflammatory bursal disease (IBD) have become major 

pathogens, causing significant economic losses to the poultry 

industry. Viruses rely on hosts to complete their life cycles 

and bind to specific receptors for entry into host cells. The 

study of viral receptors is crucial for understanding infection 

mechanisms and developing antiviral drugs. For example, 

sialic acid receptors have been identified as important entry 

receptors for avian influenza, Newcastle disease, and 

infectious bronchitis, and serve as targets for the development 

of therapeutic antibodies, antiviral drugs, and vaccines against 

these viruses. Specific antigens within pathogens are 

responsible for cellular receptor binding, particularly for 

infectious bursal disease virus (IBDV) (A. Liu et al., 2022). 

Bursal B lymphocytes are the target cells of infectious bursal 

disease virus (IBDV), which causes a severe 

immunosuppressive disease in chickens and causes significant 

economic losses to the poultry industry. The functional 

receptor for IBDV binding and entry into host cells remains 

unknown. In this study, we investigated chicken bursal 

lymphocyte host proteins that interact with VP2 using mass 

spectrometry. We found that the major capsid protein, IBDV 

VP2, interacts with the chicken transmembrane protein cluster 

of differentiation 44 (chCD44). Overexpression and 

knockdown experiments demonstrated that chCD44 promoted 

IBDV replication. Furthermore, soluble chCD44 and anti-

chCD44 antibodies inhibited viral binding. Receptor 

reconstitution results demonstrated that overexpression of 

chCD44 failed to confer viral binding to the conditioned cells. 

Importantly, although IBDV failed to replicate in non-

conditioned chCD44-overexpressing cells, (Kannaki, 

Priyanka, Abhilash, & Haunshi, 2021) [44].  

 

8. Avian influenza Antigens 

Proteins and other elements of avian influenza are central to 

viral entry into host cells and to the immune response. The 

antigens include: 

Hemagglutinin (HA) Protein: One of the key surface proteins 

of the virus. Present in 18 subtypes (H1 to H18) in influenza 

viruses. Function: Attaches the virus to host cells by binding 

sialic acid receptors on the surface of the cell. Mediates the 

fusion of the viral envelope with the host cell membrane, 

thereby allowing the virus to enter host cells. Its 

Immunological Significance is a major antigen that induces 

the synthesis of neutralizing antibodies. The virus is typed 

according to this protein (H5, H7, etc.), with H5 and H7 

belonging to highly pathogenic avian influenza (HPAI) 

(Nugroho et al., 2025; Pal, Pal, & Baviskar, 2021; Puga-

Torres, Navarrete, & de la Torre, 2025) [62, 64, 66]. 

Neuraminidase (NA) is the second major surface protein. 

Influenza viruses exist in 9 subtypes (N1 to N9). Name: 

Neuraminidase of the virus. Train of Thought to propagate the 

virus, it cleaves sialic acid residues on the cell surface, which 

hinders virus clumping. Immunological Significance: Target 

of neutralizing antibodies that block viral transmission. 

Combined with HA to differentiate viral strains (E.g., H5N1, 

H7N9) (Gao et al., 2025) [32]; Accessory and Internal 

Proteins, HA and NA are the main antigens, but other viral 

proteins also play a role in immunity and diagnostics: 

Nucleoprotein (NP): Encases the viral RNA. Targeted for use 

in diagnostic assays such as ELISA or PCR, Matrix Proteins 

(M1 and M2): Structural support to the virus. Some antiviral 

drugs target M2. Polymerase proteins (PB1, PB2, PA): 

Comparing the proteins encoded by the viral polymerase 

genes and viral assembly and replication in host cells. Crucial 

in shaping viral evolution and mutations. For relevance to 

classification and epidemiological significance: Highly 

Pathogenic Avian Influenza (HPAI), e.g., H5N1 and H7N9. 

Strains with specific HA and NA subtypes cause high poultry 

mortality. Low Pathogenic Avian Influenza (LPAI): This 

type only causes mild or no symptoms, but under certain 

conditions, it can mutate to the highly pathogenic kind. 

Regarding Application in Vaccine Development, the vaccines 

of AIV are essentially developed by targeting HA and NA 

proteins, whereupon, due immune response is implemented. 

Vaccines are adjusted based on circulating strains to 

maximize their effectiveness.  

 

9. Mycoplasma gallisepticum    

Among the tiniest self-replicating organisms is Mycoplasma 

gallisepticum. It results in long-term respiratory illnesses, 

which cost the poultry business a lot of money. Because of its 

ability to evade the immune system, M. gallisepticum can 

remain in the host after invasion, leading to a chronic 

infection that lasts for a long time. Mycoplasmas employ 

extremely intricate immune evasion tactics, which have been 

deciphered by recent studies. Because of their high frequency 

of size and expression cycle variations, M. gallisepticum 

antigens can avoid the host humoral immune response being 

activated. In addition to invading non-phagocytic chicken 
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cells, M. gallisepticum controls microRNAs to alter tracheal 

epithelial cells' apoptosis, inflammation, and cell proliferation 

during the course of the illness. It has been demonstrated that 

M. gallisepticum temporarily triggers the inflammatory 

response before Investigation into the role of purinergic 

receptors (PRs) in Marek's disease (MD), a herpesvirus-

induced cancer in chickens that is a significant pathogen for 

the poultry industry, is necessary because PRs have been 

identified as potential therapeutic targets for a variety of viral 

infections, including herpesviruses. MD is brought on by the 

MD virus (MDV).  

 

10. Poxviruses 
Enter host cells by binding to receptors that are highly 

conserved between different species, such as 

glycosaminoglycans. Poxviruses are divided into families that 

differ greatly from one another (Ali & Salama, 2024) [4], and 

both human and animal health can be affected negatively. The 

family comprises 18 genera within the subfamily 

Chordopoxvirinae, that is responsible for infecting 

vertebrates. Like other viruses, poxviruses can infect cells by 

entering through specific species receptors, like many other 

viruses, whose species are different, such as 

glycosaminoglycans. This enables the pathogen to infect 

different animals, as vascular species do not contain specific 

receptors, and productive infections do not stem from the host 

species, but rather from the extent to which the poxvirus is 

capable of counteracting the immune system (2). In the 

poxvirus family, the variation is extensive from within the 

different genus phenotypically and genotypically to the 

unique frames of species. For instance, cowpox viruses have 

an entire gene assortment of 214 intact genes, while all Old 

World orthopox viruses share 109 core genes, and variola 

virus commons 162 active genes and 17 that are deactivated, 

but might code for functional proteins. Many of the accessory 

genes that assist in immune response and host range evasion 

can account for this difference in gene content. Old-world 

orthopox viruses, cowpox viruses, tend to have the broadest 

host variety. In contrast, only animals are infected by the 

more specialized variola virus (Elshwihdi, Kammon, & 

Asheg, 2025; Fulton, Hengesbach, & Dodd, 2025; Klikha et 

al., 2024; Radaelli, Zanotto, Brambilla, Adami, & De Giuli 

Morghen, 2024; Trefry et al., 2024; Zhu et al., 2025) [27, 30, 47, 

68, 76, 87]. 

 

11. Aspergillus fumigatus 

Host innate immunity is crucial for the control of A. 

fumigatus. While the immune responses to A. fumigatus in 

humans and mice have been extensively investigated (18-20), 

the immune responses in chickens infected with A. fumigatus 

have not been fully explored. Multiple pattern recognition 

receptors (PRRs) are involved in the recognition of A. 

fumigatus, particularly Toll-like receptors (TLRs) and C-type 

lectin receptors (CLRs). Furthermore, different PRRs 

recognize distinct components of the fungal cell wall. TLR2 

and TLR4 have been shown to be involved in the recognition 

of fungal DNA and zymosan. TLR4-deficient mice are more 

susceptible to infection with A. fumigatus than control mice. 

TLR2 signaling is crucial for the cellular response to A. 

fumigatus in both mice and humans. The C-type lectin 

receptor Dectin-1 recognizes A. fumigatus β-glucan in mouse 

alveolar macrophages and is involved in inducing a 

proinflammatory response in alveolar macrophages against A. 

fumigatus. After recognition by this receptor, a subsequent 

immune response mediated by PRR is triggered, and 

proinflammatory cytokines (such as TNF-α, IL-1β, IL-6, and 

chemokine Cxcl-8) are induced to participate in the defense 

against A. fumigatus. In contrast, A. fumigatus evades the 

attack of the host immune system by regulating or inhibiting 

related signaling pathways (28, 29). It is well known that the 

physiological and anatomical characteristics of the chicken 

respiratory tract are very different from those of mammals, 

and its innate immune system is also different from that of 

mammals. For example, the chicken TLR21 can recognize 

CpG DNA, while the mammalian TLR9 can recognize CpG 

DNA (Lima-Gomes et al., 2024) [53]. Therefore, the 

pathogenicity and immune response of A. fumigatus in 

chickens may also be different. Host innate immunity plays a 

crucial role in the control of A. fumigatus. Many literatures 

have studied the immune response of humans and mice to A. 

fumigatus. However, the immune response of chickens 

infected with A. fumigatus is still lacking. Different pattern 

recognition receptors, especially Toll-like receptors (TLRs) 

and C-type lectin receptors (CLRs), are responsible for the 

recognition of A. fumigatus. Furthermore, different fungal 

recognition receptors can recognize different parts of the 

fungal cell wall. TLR2 and TLR4 have been found to play a 

role in the recognition of fungal DNA and zymosan. TLR4-

deficient mice are more susceptible to infection with A. 

fumigatus than control mice. Both human and mouse cells 

require TLR2 to respond to A. fumigatus. The C-type lectin 

receptor Dectin-1 can recognize A. fumigatus β-glucan on 

mouse alveolar macrophages and is required for the initial 

stage of the A. fumigatus proinflammatory response in 

alveolar macrophages. Recognition of cell-bound PPRs 

triggers a series of subsequent immune responses and the 

production of direct proinflammatory cytokines TNF-α, IL-

1β, IL-6, and the chemokine Cxcl-8 to defend against A. 

fumigatus (El-Shemy et al., 2023) [26]. 

TLR3, present in innate immune cells, participates in 

preliminary virus recognition. Following the infection with 

the IBV-M41 strain, TLR3 mRNA expression was increased, 

as well as the upregulation of TLR3 and TLR7 mRNA in the 

trachea and lungs of chicks after intra-tracheal infection of the 

Conn strain (Bashir et al., 2019) [8]. Nephro-pathogenic IBV 

infection markedly elevates the expression of chicken 

myeloma differentiation antigen 5 (MDA5) in the kidneys, 

indicating the action of chicken MDA5 against IBV infection. 

Chicken mannose-binding lectin (MBL), a member of the 

type collectin family, possesses antiviral activity against IBV, 

since it blocks viral S1 protein attachment and prevents the 

infection of the tracheal epithelial cells of chickens. 

Furthermore, MBL is also said to be important in the 

regulation of both innate and adaptive immunity to IBV. 

Further, a high level of MBL is believed to facilitate the 

clearance of IBV from the trachea (Barjesteh, Taha-

Abdelaziz, Kulkarni, & Sharif, 2019) [7]. 

The p53 protein, known as the “guardian of the genome,” 

helps protect cells by stopping damaged or infected cells from 

dividing or causing them to die. During viral infections, p53 

can limit the virus’s ability to spread by triggering these 

defenses. However, many viruses have developed ways to 

block or destroy p53 so they can keep reproducing. For 

example, the human papillomavirus (HPV) makes a protein 

that removes p53, which can lead to cancer. In some cases, 

like influenza or HIV infections, p53 becomes more active, 

which helps fight the virus but can also cause cell damage. 

Overall, p53 plays an important role in controlling viral 

diseases, and understanding it can help scientists find better 

treatments (Beyaz, Aslan, Gok, Ozercan, & Agca, 2023; L. 

Yang et al., 2025) [10]. 
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Materials and Methods 

End note library was created to summarise the receptors 

associated with different pathogens in poultry using 

ENDNOTE X7 version purchased in 2017 manchester UK 

https://support.clarivate.com/Endnote/s/article/EndNote-

Download-link-for-older-EndNote-versions?language=en_US  

Results shown in Table 1. 

Rapid test was performed according to manufactural 

AffiVET® laboratories Cat: LSY-20094, and LSY-20054, the 

principle of this test is to capture antibodies on a the surface 

where the antigens of the tested diseases are attached. Broilers 

chickens from different farms were admitted to veteranary 

clinics with sympoms of Avian Influenza (AI), Infectious 

bronchitis (IB), Infectious Bursal Disease (IBD) infectious 

laryngotracheitis (ILT), Newcastle disease (ND) diseases and 

Rapid test were carried out to confirm the diagnosis then post 

mortem findings were performed for further confirmation. 

And serum were collected for p53 parameter. 

P53 Expression was measured using colorimetric method 

according to (Beyaz et al., 2023) [10] using spectrophotometry 

and 96 well plate, the principle of spectrophotometry is that a 

substance absorbs or transmits light over a specific range of 

wavelengths, and this absorption is directly proportional to 

the concentration of the substance in fluid (serum of 

chickens). 

 

Results and Discussion 

Rapid test Results in (Fig. 1) revealed positive reaction for AI, 

IB. IBD, ND antigens. 

 

 
 

Fig 1: Results of immunoassay, Positive Result: A visible line at the 

test line (T) position indicates the presence of the disease antigens as 

an indicator of infection. 

 

Expression of P53 

The graph (fig. 2), shows that p53 expression significantly 

increases in all infected or diseased groups compared to the 

control. The Control group has very low p53 levels, while the 

IBD group shows a moderate increase. ND and IB groups 

display further elevated p53 expression, with statistical 

significance (p<0.01 and p<0.001, respectively). The AI 

group exhibits the highest p53 concentration, suggesting 

strong activation of the p53 pathway. This pattern indicates 

that disease or infection severity may correlate with increased 

p53 expression, reflecting a cellular stress or immune 

response. 

 

 
 

Fig 2: p53 concentration (ng/well) across five groups: Control, IBD, ND, IB, and AI. The y-axis represents p53 expression measured by optical 

density at 450 nm. 

 

The elevated p53 expression observed in infected and 

diseased groups suggests that viral or inflammatory 

conditions trigger cellular stress responses that activate the 

p53 pathway. Since p53 is involved in controlling cell cycle 

arrest and apoptosis, its increased levels may represent a 

protective mechanism aimed at limiting viral replication and 

preventing damaged cells from proliferating (L. Yang et al., 

2025; Y. Yang et al., 2025; Zhi et al., 2025) [81]. The highest 

p53 concentration in the AI group indicates a strong host 

defense reaction, possibly due to more severe infection or 

immune activation. These results support the idea that p53 

plays a crucial role in the body’s response to viral diseases 

and could serve as a potential biomarker for infection severity 

(Jansons et al., 2025; Jiang, Li, Dou, Han, & Fan, 2025; Latif 

et al., 2025; Liao et al., 2025) [40, 41, 48]. 

 

Conclusion 
Immunity against viral diseases in poultry (table 1), such as 

Newcastle Disease, is induced by the HN and F proteins, 

explaining why vaccines against Newcastle Disease mostly 

target these antigens. Lentogenic strains are also used as live 

attenuated vaccines that induce immunity without causing 
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disease. Newcastle Disease Virus has two major antigens, 

which are the Hemagglutinin-Neuraminidase (HN) and 

Fusion (F) proteins. These proteins are responsible for 

attachment, entry, and dissemination of viruses and are the 

principal targets of vaccines and the immune response. The 

existence of neutralizing antibodies specifically targeting 

these antigens is crucial for the prevention and control of 

NDV infection. The Role of ILTV Antigens in Immunity. 

Viral glycoproteins (e.g., gB, gC, gD): Slant primary targets 

for neutralizing antibodies that block viral access to host cells. 

Generic vaccines induce humoral (antibody-mediated) and 

cellular immune responses. Capsid and tegument proteins: 

Have a minimal role in stimulating immune responses. 

Practical for diagnostic tests for ILTV infection. ILTV 

antigens, particularly the glycoproteins, also play a role in 

allowing the virus to escape antibody-mediated immunity by 

the host, which allows for the maintenance of the virus in 

infected birds. Nitric oxide acts as a marker of viral 

replication in poultry vaccines and recombinant mediating 

multiple immune responses towards glycoproteins (gB, gD, 

and gC). Inactivated vaccines use ILTV antigens so that 

protective immunity can be stimulated without disease 

induction. 

The role of poultry receptors in disease susceptibility and 

resistance is a critical area of research with significant 

implications for the poultry industry. Toll-like receptors, 

cellular receptors for ALV, and other PRRs are at the 

forefront of this field, offering insights into the mechanisms 

of immune response and opportunities for genetic and 

nutritional interventions. By leveraging advanced genomic 

tools, vaccine technologies, and artificial intelligence, the 

industry can address the challenges posed by infectious 

diseases, ensuring sustainable poultry production and global 

food security. p53 is a pivotal regulator in poultry health, 

influencing antiviral defense, tumor suppression, and immune 

system function. Further research into p53's mechanisms 

could lead to improved disease management and prevention 

strategies in poultry farming. 

 

Future work 

The advent of CRISPR-Cas9 technology offers unprecedented 

opportunities to edit receptor genes, creating disease-resistant 

poultry lines. For example, modifying TLR4 or ALV receptor 

genes could significantly reduce the prevalence of bacterial 

and viral infections (Cheema et al., 2025; Rahimi et al., 2025; 

D. Zhang, Liu, & Zhong, 2025) [17, 84, 69, 13] and vaccine 

development. 

Receptor-based adjuvants and vaccines targeting specific 

PRRs can enhance immune responses, providing long-lasting 

protection against infectious diseases. This approach is 

particularly promising for combating emerging pathogens 

such as avian influenza and Newcastle disease. Finally, 

Integration of Artificial Intelligence; Deep learning 

techniques, such as those used in smartphone-based disease 

detection frameworks, can complement receptor-based 

interventions by enabling early diagnosis and monitoring of 

poultry diseases. 

 
Table 1: Summary of Identified receptors of known pathogens of common poultry diseases 

 

Reference Disease Antigen Receptor 
N

o 

(Chang et al., 2023; Ichikawa et al., 2024; Kim et al., 2025; 

Lv et al., 2023; Song et al., 2025; C. Zhang et al., 2022) [38, 

83, 75] 

Avian Influenza 

Virus AI 
HA, NA Sialic Acid Receptor 1 

(A. Liu et al., 2022) 
Infectious bursal 

disease IBD 
VP2 

chCD44 specific cellular 

receptor(s) with viral envelope 

glycoprotein, 
2 

(Espejo, Goraichuk, Suarez, Breedlove, & Toro, 2025; Lee 

& Gladney, 2025; Neog, Kumar, & Trivedi, 2025) [28, 49, 60] 
Newcastle 

Disease ND 
Hemagglutinin-

Neuraminidase) Protein 
sialoglycoconjugates 3 

(Akbar et al., 2023; Akbar & Jarosinski, 2024) [1, 2] 
Marek Disease 

MD 

Marek's disease tumor-

associated surface antigen 

(MATSA) 

Purinergic Receptors (PRs) 4 

(Bovenhuis et al., 2022; Khan et al., 2024; Mitra, 

Bramberger, Bilic, Hess, & Liebhart, 2021; Nihashi et al., 

2019) [12, 45, 58, 61] 
Many diseases 

certain parts present on 

many bacteria or viruses. 
TLR1A 5 

(Schwegmann-Wessels et al., 2011; Winter, Schwegmann-

Wessels, Cavanagh, Neumann, & Herrler, 2006) [78] 
Avian Infectious 

Bronchitis IB 
S1 Sialic Acid Receptor 6 

(Belalmi et al., 2025; Dieste-Perez, Holstege, de Jong, & 

Heuvelink, 2025; Hatim & Denning, 2025; Wei et al., 2024) 

[9, 25, 35, 77] 

Aspergillus 

fumigatus 
β-Glucan C-type lectin receptor, dectin-1, 7 

(Elshwihdi et al., 2025; Fulton et al., 2025; Gentile, 

Carrasquer, Marco-Fuertes, & Marin, 2024; Klikha et al., 

2024; H. Liu, Li, Tang, Ding, & Wang, 2024; Zhu et al., 

2025) [27. 47, 87] 

Avipoxvirus 

(avian pox) 
viral proteins host glycosaminoglycans (GAGs) 8 

(Gornatti-Churria et al., 2025; Hosny et al., 2025; Kachabi, 

Pourbakhsh, & Zahraei Salehi, 2025) [34, 37, 42] 

Mycoplasma 

gallisepticum 
Cellular receptors 

A family of variable lipoproteins 

(VlhA) 

cytadhesin molecule GapA and 

other cytadherence-related 

molecules such as CrmA 

extracellular matrix (ECM) proteins 

9 

(Xu et al., 2025; X. Zhang et al., 2025) [79, 84] 
Avian Leukosis 

Virus (ALV) 
Subgroup A ALVs 

Tva Receptor 

Tvj Receptor 
10 

(Ponnusamy et al., 2025; Regragui et al., 2025) [65, 70] 

Infectious 

laryngotrachitis 

ILT 

glycoproteins (gB, gD, and 

gC) 

glycoproteins (gB, gD, and gC) 

Receptor 
11 
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