

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(10): 181-186 © 2025 VET

www.veterinarypaper.com Received: 20-08-2025 Accepted: 24-09-2025

Atigur Rahman

ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India

A solar energy operated mechanism for mitigating heat stress in cattle barn

Atiqur Rahman

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i10c.2629

Abstract

The heat stress felt by dairy cattle during summer months causes many negative consequences in terms of physiological and behavioral disturbances, susceptibility to diseases and a significant loss in milk production. To mitigate the heat stress, the microclimate of the barn should be known and based on which a suitable mechanism is to be adopted. In commercial dairying barns are often been erected with bricks wall and tin sheets roof and therefore this paper presents the level of heat stress faced by the dairy cattle in such type of barns and describes about a heat stress mitigation mechanism, operated by solar energy. The working pressure of the mechanism, ranged from 54-133 psi over the incident solar radiation intensity of 400-900 W/m². When, this pressured water is passed through nozzles of suitable aperture then very fine droplets of water are formed. This creates a fog like situation in the barn and associated evaporative mechanism reduces the barn temperature. The developed device covers even a good size barn and also covers many neighboring barns with appropriate networking mechanism. Though the experimental data is site specific but a close resemblance of climatic conditions of the experimental site and other parts of the country suggests a wider applicability of the mechanism.

Keywords: Heat stress, solar irradiance, cattle barn, working pressure, nozzles

Introduction

It is being strongly observed that the climate change has increased the intensity and duration of heat waves by trapping more heat in the atmosphere. This is leading to severe health impacts on humans and animals. The heat stress experienced by humans and animals is associated with air temperature in conjunction with humidity of the environment. The negative impacting is being felt in their production and reproduction, intensive selection of production traits, and evoke of physiological responses (Schüller *et al.*, 2014; Yasobant *et al.*, 2025, Habeeb *et al.*, 2018) [18, 20, 6]. It also negatively impacting the lactation phase and milk production in dairy cattle, as high productivity dairy cattle show a high amount of metabolic heat production and requires a cool surrounding for releasing excess heat (Wolfenson and Roth, 2019; Oliveira *et al.*, 2025; Lambertz *et al.*, 2014) [19, 14, 9].

The environmental risk factors on animals are assessed by an indicator, called Temperature-Humidity Index (THI). Some of the popular mathematical formulae for calculation of THI are reported in Table1. This indicator gives the effect of thermal stress in terms of ambient temperature and relative humidity (Bohmanova *et al.*, 2007) [3]. Based on experimental observations, the resilience of animals against the heat stress is classified by several researchers however the widely acceptable classifications of Hahn *et al.* (2009) [7] is enumerated in Table 2.

Based on these facts this paper describes the heat stress faced by dairy animals in the barns often erected with bricks walls and roof of tin sheets supported by iron angles. Such types of cattle barns are located at ICAR Research Complex for Eastern Region Patna (25.59°N, 85.08°E) and therefore selected for study and describes about a prototype solar energy operated mechanism for mitigating heat stress.

Corresponding Author: Atiqur Rahman ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India

Table 1: Mathematical formulas for THI calculation

THI = 1.8T - (1-RH) (T-14.3) + 32	(Kibler, 1964) ^[8]
THI = $(1.8 \times T + 32)$ - $(0.55$ - $0.0055 \times RH) \times (1.8 \times T$ - $26)$	(NRC, 1971) ^[12]
$THI = T + (0.36 \times Ta) + 41.2$	(Yousef,1985) [21]
$THI = (0.8 \times T) + [(RH/100) \times (T-14.4)] + 46.4$	(Mader et al., 2006) [10]

T is the temperature (°C) and RH: relative air humidity (%) of animal environment

Table 2: The level of heat stress in dairy cattle

SL. No.	THI	Heat stress level
1.	< 74	Normal
2.	75-78	Alert
3.	79-83	Danger
4.	> 84	Emergency
5.	72	Critical threshold

Materials and Methods

The increasing trend of dairying at commercial level necessarily requires good infrastructure and high productivity dairy cattle. This has led to construction of sizeable barns often made of bricks walls, good number of windows fitted with wire mesh for proper ventilation, and iron angles supported painted tin sheets roof. The physical dimension of the barn selected for study was of 20 m \times 7 m \times 4 m. During intense heat waves conditions barn windows were covered with canvas cloths to avoid direct exposure of hot air. In the month of March to June, random measurements of temperature and relative humidity inside the barn showed that the absolute temperature difference between the barn temperature (T_b) and outdoor temperature (To), i.e., ΔT (= $|T_b - T_0|$) never exceeded 10 percent of the To, and similarly the absolute difference in relative humidity of barn (RH_b) and outdoor relative humidity (RH₀), i.e., $\Delta RH (= |RH_b - RH_0|)$ was always below 11%. The ΔT and ΔRH both were directly dependent on the wetness of barn, number of cattle in the barn and the wind flow through the windows. If windows were not covered then ΔT and ΔRH were minimum, as suggested in studies (Patil et al., 2025) [16]. With these observations, there were following possibilities:

T_0H_0	Temperature and humidity of barn were same as outdoor
T_0H_1	Temperature was same but the relative humidity was
	higher than the outdoor
T_0H_{\downarrow}	Temperature was same but the relative humidity was
	less than the outdoor
$T_{\uparrow}H_{0}$	Temperature was higher than the outdoor but humidity
	was same
T _↑ H _↑	Temperature and humidity both were higher than the
	outdoor
тн	Temperature was higher than the outdoor, but relative
$1^{\downarrow}\Pi^{\downarrow}$	humidity was lower
$T_{\downarrow}H_{0}$	Temperature was lower than the outdoor, but relative
	humidity was same
	Temperature was lower than outdoor, but relative
$T_{\downarrow}H_{\uparrow}$	*
	humidity was higher
$T_{\downarrow}H_{\downarrow}$	Temperature and relative humidity both were lower
	than the outdoor

To outdoor temperature and relative humidity data were acquired from the nearby aerodrome weather station. The variation of maximum temperature and relative humidity of critical summer months of 2024 are shown in Fig. 1 and Fig. 2. Based on these data the thermal humidity indices were calculated by using NRC formula [THI= $(1.8 \times Tb + 32)$ - $(0.55-0.0055 \times RH_b) \times (1.8 \times Tb-26)$]

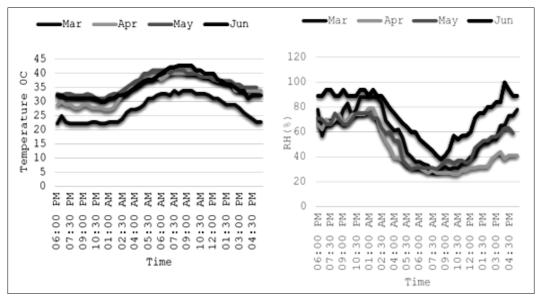


Fig 1: Outdoor maximum temperature and humidity over a day of critical summer months of the site

Results and Discussions

The THI of the barn at 8.00 am, 12.00 pm and 4.00 pm for critical summer month, of March-June is reported in Table 3.

Interpretation of data shows that the heat stress level exceeded the permissible limits (> 74) almost in all the months throughout the day and therefore cattle were facing heat stress in all the months from March-June, and the degree of stress increased towards the June. This necessitated measures for the barn to assuage heat stress. As suggested in literatures (Bernabucci, 2019; Oke *et al.*, 2021; Mohapatra *et al.*, 2023; Anderson *et al.*, 2013; Chen *et al.* 2015; Orellana Rivas *et al.*, 2021; Broucek *et al.*, 2020) [2, 13, 11, 1, 5, 15, 4] some common measures for heat stress mitigation include roof sprinkling,

forced air supply, misting or fogging, but the selection of type of measures should be cost-effective and easy in maintenance. Further, to assess the changes in $^{THI}(T,H)$ of barn from reference vale $^{THI}(T_0,H_0)$ more elaborately under different scenarios, the ΔTHI was plotted for different month for different scenarios and is shown in Figure 2.

Time	T_0H_0	T_0H_1	T_0H_{\downarrow}	$T_{\uparrow}H_{0}$	$\mathbf{T}_{\uparrow}\mathbf{H}_{\uparrow}$	$\mathbf{T}_{\uparrow}\mathbf{H}_{\downarrow}$	$\mathbf{T}_{\downarrow}\mathbf{H}_{0}$	$\mathbf{T}_{\downarrow}\mathbf{H}_{\uparrow}$	$\mathbf{T}_{\downarrow}\mathbf{H}_{\downarrow}$
March									
8:00 AM	77.6	79.5	75.8	81.1	83.3	79.0	74.1	75.6	72.6
12:00 PM	74.3	75.4	73.1	77.9	79.3	76.5	70.6	71.5	69.7
4:00 PM	72.7	73.8	71.7	76.2	77.5	74.9	69.2	70.0	68.4
April									
8.00 AM	84.9	87.4	82.4	89.1	92.0	86.2	80.7	82.8	78.6
12:00 PM	83.4	85.7	81.1	87.5	90.2	84.8	79.3	81.2	77.4
4:00 PM	80.4	82.3	78.5	84.3	86.6	82.0	76.5	78.1	74.9
May									
8:00 AM	86.8	89.4	84.2	91.2	94.3	88.2	82.4	84.6	80.1
12:00 PM	84.7	87.0	82.4	89.0	91.7	86.3	80.4	82.3	78.4
4:00 PM	86.3	88.3	84.3	91.1	93.5	88.7	81.5	83.2	79.8
June									
8:00 AM	91.4	94.2	88.6	96.4	99.7	93.2	86.4	88.7	84.0
12:00 PM	92.5	95.0	90.0	97.9	100.8	95.0	87.1	89.2	85.0
4:00 PM	86.5	88.2	84.9	91.8	93.8	89.9	81.2	82.5	79.8

Table 4: THI of the barn under different scenarios during March to June

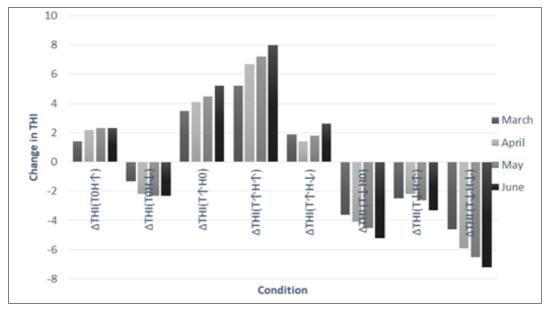


Fig 2: Change in heat stress level of barn under different scenarios from March to June

From Fig.2 it was observed that, under the scenarios (T_0H_{\uparrow}) , $(T_{\uparrow}H_0)$, $(T_{\uparrow}H_{\uparrow})$ and $(T_{\uparrow}H_{\downarrow})$, the changes $^{\Delta THI_s}$ were positive, however under the scenarios $(^{T_0H_{\downarrow}})$, $(T_{\downarrow}H_0)$, $(T_{\downarrow}H_{\uparrow})$ and $(T_{\downarrow}H_{\downarrow})$ the changes $^{\Delta THI_s}$ were negative. Therefore, the heat stress mitigation was possible only under the scenarios $(^{T_0H_{\downarrow}})$, $(^{T_{\downarrow}H_0})$, $(^{T_{\downarrow}H_{\uparrow}})$ and $(^{T_{\downarrow}H_{\downarrow}})$. A maximum $^{\Delta THI}$ was with $(^{T_{\downarrow}H_{\downarrow}})$, i.e., when temperature and humidity both were decreased simultaneously. This condition requires air conditioner, but it was a costly affair for a barn. The next maximum change was with the scenario $(^{T_{\downarrow}H_0})$ and this could be achieved by air blowing. But air blowing mechanism has a limitation that it has limited capacity of temperature reduction. The third maximum change was possible with the

scenarios $(T_{\downarrow}H_{\uparrow})$ and this can be achieved by misting or fogging.

Further a fogging mechanism needs continuous energy supply for operation. The required energy can be supplied either by electricity or by fossil fuel. Due to the lack of grid power connectivity and increase in fossil fuel cost and associated environmental factors, the solar energy application could be a better option. To assess the solar energy availability at experimental site the mean monthly averaged daily solar radiation of the site measured by pyranometer by Rahman and Bhatt (2014) [17] is shown in Figure 3. From Figure 3 it was observed that the solar irradiance was ranging from 200-953 W/m² over a day and the mean monthly daily averaged radiation intensity from March to June was 6.4-4.8 kW/m²/day and could be good source of energy for operating heat stress mitigation mechanism in the cattle barn.

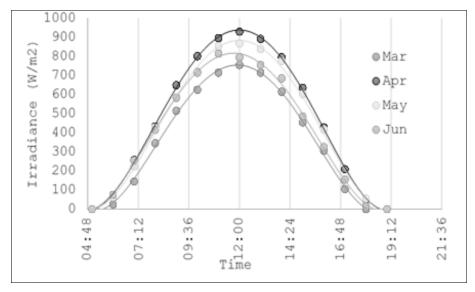


Fig 3: The mean monthly daily solar irradiance of the site

To utilize solar energy of the site a fogging mechanism was designed (Figure 4) using a permanent magnet DC motor of rating 1500 W, a 1.8 kWp photovoltaic solar array, a compressor of power dissipation rating of 1000 W, a plastic tank of 500 liters capacity, nozzles with adjustable aperture, ³/₄ inch GI pipe, high pressure flexible conduit and some control

volves. The selection criteria of compressors were based on its working pressure and choosing nozzles with variable aperture was to get fine size water droplets even at low solar irradiance, as droplets size was inversely proportional to nozzle aperture.

Fig 4: The developed fogging mechanism

To assess the performance of the developed fogging mechanism under different solar radiation conditions, the working pressure of the mechanism was measured and plotted against the solar irradiance (Figure 5). The solar irradiance between 8.00 AM to 3.00 pm on a clear day of March to June was ranging from 400-900 W/m^2 and corresponding to this incident solar radiation range, the working pressure of the

mechanism was 53-134 psi (Figure 5). For the selected barn *six* nozzles were networked using GI pipe from mechanism to barn and flexible pipe segments were used to connect the nozzles with GI line. These nozzles were installed at the windows of the barn (Figure 6). At relatively low pressure, the nozzle aperture was adjusted to reduce aperture area to get fine droplets.

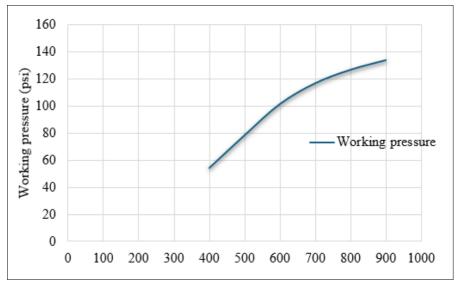


Fig 5: Working pressure of the mechanism vs. Solar irradiance of the site

Fig 6: Installation of nozzles in cattle barn

The operating view of the mechanism in the Bufalo barn is shown in Fig.7. There had been a substantial cooling once mechanism was operated for ½ hour. This mechanism cools the surfaces and air through the process of evaporative cooling where fine water droplets absorb heat from the surrounding air as they evaporate. Further, the tiny droplets remain suspended in the air a longer period and allowing evaporation for a longer period and lowers the temperature with increase in humidity. Further, a single mechanism can covered a large barn by operating only few nozzles at a time

and can cover a number of nearby barns barns by diverting supply line other barns at a certain interval of time. The solar array operating the mechanism can also be used for groundwater pumping or lifting pond water from a nearby pond when fogging in barn was not required. Again, the outdoor conditions of temperature and humidity of the site is nearly similar to the temperature and humidity conditions as well as solar radiation conditions of other parts of the country, hence the developed mechanism has wider applicability.

Fig 7: Operatinal views of mechanism in Bufalo barn

Acknowledgements

The authors gratefully acknowledge the research was supported by the Indian Council of Agricultural Research,

Department of Agricultural Research and Education, Government of India.

Conflict of interest

The author declares no conflict of interest

Financial Support

Not available

Reference

- Anderson SD, Bradford BJ, Harner JP, Tucker CB, Choi CY, Allen JD, et al. Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate. J Dairy Sci. 2013;96(7):4738-4750. DOI: 10.3168/jds.2012-6401.
- 2. Bernabucci U. Climate change: Impact on livestock and how can we adapt. Anim Front. 2019;9(1):3-5. DOI: 10.1093/af/vfy039.
- Bohmanova J, Misztal I, Cole JB. Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci. 2007;90:1947-56. DOI: 10.3168/jds.2006-513.
- Broucek J, Ryba S, Dianova M, Uhrincat M, Soch M, Sistkova M, et al. Effect of evaporative cooling and altitude on dairy cow's milk efficiency in lowlands. Int J Biometeorol. 2020;64(3):433-44. DOI: 10.1007/s00484-019-01828-5.
- Chen JM, Schütz KE, Tucker CB. Cooling cows efficiently with sprinklers: physiological responses to water spray. J Dairy Sci. 2015;98(10):6925-6938. DOI: 10.3168/jds.2015-9434.
- Habeeb A, Gad AE, Atta MA. Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. Int J Biotechnol Recent Adv. 2018;1(1):35-50. DOI: 10.18689/ijbr-1000107.
- 7. Hahn GL, Gaughan JB, Mader TL, Eigenberg RA. Thermal indices and their applications for livestock environments. In: De Shazer JA, editor. Livestock energetics and thermal environment management. ASABE; 2009, p. 113-30.
- Kibler HH. Environmental physiology and shelter engineering with special reference to domestic animals. LXVII. Thermal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. Research bulletin. University of Missouri; 1964.
- Lambertz C, Sanker C, Gauly M. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J Dairy Sci. 2014;97:319-329.
- 10. Mader TL, Davis MS, Brown-Brandl T. Environmental factors influencing heat stress in feedlot cattle. J Dairy Sci. 2006;84(3):712-719.
- Mohapatra AK, Swain SK, Dash AK, Mohanty GP, Mishra SK, Behera D. Effect of water sprinkling over shed-net covered cattle shed on shed environment and milk yield of cows during summer season. Ecol Environ Conserv. 2023;29(3):1104-1108.
 - DOI: 10.53550/EEC.2023.v29i03.013.
- 12. National Research Council (NRC). A guide to environmental research on animals. Washington: National Academy of Science; 1977.
- 13. Oke OE, Uyanga VA, Iyasere OS, Oke FO, Majekodunmi BC, Logunleko MO, *et al.* Environmental stress and livestock productivity in hot-humid tropics: alleviation and future perspectives. J Therm Biol.

- 2021;100:103077. DOI: 10.1016/j.jtherbio.2021.103077.
- 14. Oliveira CP, de Sousa FC, da Silva AL, Schultz EB, Londoño RIV, Reinoso de Souza PAR. Heat stress in dairy cows: impacts, identification, and mitigation strategies: A review. Animals (Basel). 2025;15(2):249. DOI: 10.3390/ani15020249.
- 15. Orellana Rivas RM, Marins TN, Weng X, Monteiro APA, Guo J, *et al.* Effects of evaporative cooling and dietary zinc source on heat shock responses and mammary gland development in lactating dairy cows during summer. J Dairy Sci. 2021;104(4):5021-33. DOI: 10.3168/jds.2020-19146.
- Patil SB, Biju S, Balusami C, Suraj PT, Zarina A, Bunglaven SJ. Influence of macro-climate variables on the microclimate in cattle barns with different orientation and roof modification during pre-monsoon season in central region of Kerala. Int J Vet Sci Anim Husb. 2025;10(3):248-52.
- 17. Rahman A, Bhatt BP. Scope of solar energy groundwater pumping. The Ecoscan. 2014;8(1&2):121-5.
- 18. Schüller LK, Burfeind O, Heuwieser W. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology. 2014;81(8):1050-1057. DOI: 10.1016/j.theriogenology.2014.01.029.
- 19. Wolfenson D, Roth Z. Impact of heat stress on cow reproduction and fertility. Anim Front. 2019;9(1):32-38. DOI: 10.1093/af/vfy027.
- 20. Yasobant S, Lekha KS, Trivedi P, Krishnan S, Kator C, Kaur H, *et al.* Impact of heat on human and animal health in India: A landscape review. Dialogues Health. 2025;6:100203. DOI: 10.1016/j.dialog.2024.100203.
- 21. Yousef MK. Stress physiology in livestock. Basic principles. Vol. I. Boca Raton: CRC Press; 1985.

How to Cite This Article

Rahman A. A solar energy operated mechanism for mitigating heat stress in cattle barn. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(10):181-186.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.