

# International Journal of Veterinary Sciences and Animal Husbandry



ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(10): 96-100 © 2025 VET

www.veterinarypaper.com Received: 11-07-2025

Received: 11-07-2025 Accepted: 15-08-2025

#### Rawad Sweidan

Livestock Research Directorate, National Agricultural Research Center, PO Box (639), Baqa'a 19381, Jordan

## The role of conjugated linoleic acid in farm animal

### **Rawad Sweidan**

**DOI:** <a href="https://www.doi.org/10.22271/veterinary.2025.v10.i10b.2612">https://www.doi.org/10.22271/veterinary.2025.v10.i10b.2612</a>

#### Abstract

The many functions of conjugated linoleic acids (CLAs) in animal metabolism and their possible advantages for human and animal health are the main topics of this review. The rumen microbiota of ruminants produces CLAs, a class of geometric isomers of octadecadienoic acids, as an intermediate. Due to their distinct roles as antioxidants, anti-carcinogens, anti-atherosclerotics, anti-obesity agents, anti-diabetics, and immune system enhancers, two major isomers of CLA, cis-9, trans-11 CLA (CLA-9) and trans-10, cis-12 CLA (CLA-10), have been thoroughly examined in recent decades. Due to its structure, CLA is an effective antioxidant. Because it possesses the conjugated diene orientation necessary for the lipid peroxidation process, it contributes to the scavenging of free radicals. The anticarcinogenic action of CLA may be partially attributed to its antioxidant properties. CLAs are also associated with enhancing immune system properties by mediating the synthesis of inflammation markers. Nevertheless, little is known about the precise health benefits of CLAs and the mechanisms behind their action. CLA is also linked to the metabolism of fats in animal products, such as meat and milk. The supplementation of CLA potently reduces milk fat, involving different pathways that inhibit gene expression of lipogenic enzymes, resulting in milk fat depression in ruminant animals. In addition, supplementation of CLA to non-ruminant animals could shift the lipid composition to more saturated fatty acids in place of monounsaturated fatty acids in their meat.

Keywords: CLA, antioxidant, anti-carcinogenic, lipid metabolism

### Introduction

The term 'functional food' is often used as a generic description for the beneficial health effects of ingested foods that go beyond their traditional nutritive values (Benjamin & Spener, 2009) [13]. Ha *et al.* originally identified the alleged health benefits of conjugated linoleic acids (CLAs) in 1987 when they observed that ground beef included a number of conjugated dienoic isomers of LA that showed anti-carcinogenic properties. When linoleic acid (LA) and α-linolenic acid (ALA) are biohydrogenated into saturated stearic acid (C18:0), the rumen microbiota of the ruminants synthesizes conjugated linoleic acids, a group of geometric isomers of octadecadienoic acids (18:2) with cis and trans orientation, as an intermediate (Bauman *et al.*, 1999; 2003) [5, 6]. Since these CLA isomers are natural food ingredients with significant health advantages, they have drawn increased attention in the last ten years. Anticarcinogenic, anti-atherosclerotic, anti-obesity, anti-diabetic, and immune-boosting are some of the positive effects (McGuire & McGuire, 2000) [42].

Numerous biological investigations, including CLA, were developed following the initial discovery, and the results demonstrated a variety of beneficial health effects of CLA in experimental animal models (Benjamin *et al.*, 2015) [14]. For example, CLA was supposed to have beneficial health effects, such as suppressing cancer, reducing atherosclerosis development and cardiovascular diseases (CVD), delaying the onset of type II diabetes, and improving the mineralization of bone and modulating the immune system (McGuire & McGuire, 2000; Whigham *et al.*, 2000; Pariza *et al.*, 2001) [42, 58, 44]. Therefore, CLA-rich foods may be considered as functional foods; and that CLAs per se are neither a food nor a functional food but a FA class with some bioactive properties (Benjamin *et al.*, 2015) [14]. However, there are certain similarities in the methods by which CLA worked in animals.

Corresponding Author: Rawad Sweidan Livestock research directorate, National Agricultural Research Center, PO Box 639, Baqa'a 19381, Jordan These mechanisms and the health benefits of CLA supplementation have been extensively studied in humans using animal models most of these studies have utilized mice or murine tissues to investigate the beneficial effects of CLA on human nutrition. However, little research has been conducted to examine the potential health benefits of supplementing animals with CLA. Numerous nutritional studies have examined the effects of adding CLA to an animal's diet on lipid metabolism and milk fat depression (Bauman & Griinari, 2003; Griinari & Bauman, 2006; Conte *et al.*, 2018; Dewanckele *et al.*, 2020) [8, 40, 19].

The aim of this review is to focus on the mechanism by which CLA play a role as anti-oxidant reagent, anti-carcinogenic, anti-atherosclerotic, insulin resistance, immune system and inflammation, oxidative stress and lipid metabolism. It also focuses on the role of CLA in both human and animal health and their role in animal production.

### The Role of CLA in Oxidative Stress

According to Halliwell (2007) <sup>[25]</sup>, oxidative stress is the outcome of an imbalance between the body's capacity to quickly detoxify reactive oxygen species (ROS) or repair the harm they cause to cell components, such as proteins, lipids, and nucleic acids, and the systemic manifestation of these ROS (Subedi *et al.*, 2014) <sup>[55]</sup>.

The two main sources of intracellular ROS generation are mitochondria and NADPH oxidases (NOXs) (Di Cristofano *et al.*, 2021) [20]. Apart from their metabolic function in the Krebs cycle, the metabolism of fatty acids and amino acids generates the majority of cellular energy through mitochondrial respiration, which includes the oxidative phosphorylation system and electron transport chain (Friedman & Nunnari, 2014) [22]. These organelles are the site of O2•- free radical production due to electron leak from the ETC and one-electron reduction of oxygen (Handy & Loscalzo, 2012) [26]. NOXs are another important cellular source of ROS, including hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and the superoxide anion radical (O2•-) (Bedard & Krause, 2007; Sies & Jones, 2020) [10,53].

It is generally recognized that free radicals, including reactive oxygen produced by lipid peroxidation, can damage cells by "stealing" electrons from the lipids in cell membranes (Halliwell, 2007) [25]. Since CLA already contains the conjugated diene orientation needed for the lipid peroxidation process, it may be able to scavenge a free radical. The formation of a conjugated diene by the rearrangement of fatty acids is a crucial step in stabilizing the free radical (Ayala *et al.*, 2014) [4].

The earliest evidence of CLA's antioxidant activity came from in vitro tests conducted in 1987 (Ha *et al.*, 1987). According to their findings, CLA is a powerful antioxidant that is nearly as efficient as butylated hydroxytoluene (BHT) and more potent than vitamin E. IP *et al.* (1991) [29] proposed that the antioxidant effect of CLA may be partly responsible for its anti-carcinogenic properties.

The free radical scavenging capabilities of CLA-9 (cis-9, trans-11) and CLA-10 (trans-10, cis-12) isomers against the stable 2, 2-diphenyl-1-picryhydrazyl radical (DPPH) in ethanol were examined in a study by Ali *et al.* (2009) <sup>[2]</sup>. Their findings demonstrated that CLA directly responded and quenched free DPPH radicals in a dose and time manner without any lag phase, using an ELISA reader approach. Furthermore, under the same experimental conditions, trans-10, cis-12 had a higher Total Antioxidant Capacity (TAC) than cis-9, trans-11.

The antioxidant ability of two CLAs (trans-10, cis-12/cis-9, and trans-11) mixed at two ratios (1:6 and 1:13, respectively) was also investigated by the same group of researchers (Ali et al., 2012) in comparison to vitamin E. At low concentrations (2.5 and 5 mg/ml) in the system, they discovered that cis-9, trans-11 CLA was the most effective isomer to directly react and quench free radicals, while trans-10, cis-12 CLA had higher maximal efficacy than other tested CLAs as free radical scavenger TAC at high doses (20, 40, and 80 mg/ml). Studies including CLA supplementation for one to two years have shown that it is well-tolerated; nonetheless, there was a rise in inflammatory markers in the blood, including TNF, ILs, and CRP (Tholstrup et al., 2008) [56]. The rise in insulin resistance linked to the risk of cardiovascular disease may be connected to alterations in oxidative stress and inflammatory indicators (Lamarche & Desroches, 2004) [34].

### The Role of CLA as Anti-Carcinogenic

In several animal models, dietary supplementation with CLA has been shown to prevent chemically induced cancers of the epidermis, colon, mammary gland, and fore stomach (Kelley et al., 2007) [33]. Research on the effects of CLA on tumors generated in the mouse forestomach (Chen et al., 2003) [16] and rat mammary gland (Ip et al., 2002) [30] indicates that CLA inhibits tumor production or incidence. According to reports, the mechanisms underlying CLA's inhibitory effects on various cancer types include changes in tissue fatty acid composition, lipid peroxidation, eicosanoid metabolism, and the expression of genes that regulate cell growth and apoptosis (Kellev et al., 2007) [33]. Different cancer types would likely respond differently to CLA therapies in different organs since the mechanisms of action linked to the carcinogenic effects of CLA vary depending on the kind of tumor and the stage of tumor progression (Belury, 2002a) [11]. A CLA supplement was linked to a nearly 30% lower risk of colorectal cancer, according to research by Larsson et al. (2005) [35]. In their 2009 study, the same researchers found no indication that CLA consumption protected Swedish women from developing breast cancer (Larsson et al., 2009) [36]. CLA-9 was shown to have a preventive effect on breast

CLA-9 was shown to have a preventive effect on breast cancer patients by McCann *et al.* (2004) [41]. Higher consumption of CLA was observed to reduce the proportion of ER-negative to ER-positive epithelial cells in these women. Since premenopausal women with breast cancer frequently have ER-negative epithelial cells, CLA intakes did not demonstrate an anti-carcinogenic impact on breast cancer (McCann *et al.*, 2004) [41]. The anti-carcinogenic properties of CLA in humans with breast cancer incidence were not confirmed by another epidemiological investigation with 6.4 years of follow-up (Brown, 2008) [15].

# The Role of CLA in Immunity and Inflammation Reactions

CLA mediates inflammatory responses and contributes to the immune system. According to a study by Risérus *et al.* (2002), when 60 men with metabolic syndrome were given CLA-10 for 12 weeks, their levels of PGF2 $\alpha$  increased sixfold, and their levels of C-reactive protein (CRP), a marker of circulatory inflammation that aids in the prediction of CVD (Ridker *et al.*, 2003) [48], increased by 10%. This was in contrast to the placebo group. The body's levels of PGF2 $\alpha$ , an indicator of inflammation, and PGF2 $\alpha$ , an indicator of oxidative stress, increased when CLA-9 (3g/d) was supplemented (Risérus *et al.*, 2004) [50].

The body uses peripheral blood mononuclear cells (PBMCs) to secrete TNF $\alpha$ , IL-1 $\beta$ , leukotriene B4, and PGE2 (Kelley *et al.*, 2001) <sup>[32]</sup>. According to Albers *et al.* (2003), CLA supplementation with both CLA-9 and CLA-10 in the ratios of 50:50 or 80:20, respectively, increased the concentration of CLA in the lipid portion of PBMC by 35%.

Cytokines are hormone-like mediators of immunity and inflammation that are produced by macrophages and other immune cells in response to stimulation (Pariza *et al.*, 2000) <sup>[45]</sup>. Tumor necrosis factor-α (TNF-α), along with interleukin-1 (IL-1), induces various effects in immune cells, including the inflammatory response. Eicosanoids, especially prostaglandin (PGE2), control the production and function of TNF-α and IL-1 (Lewis, 1983) <sup>[37]</sup>. Li and Watkins (1998) <sup>[38]</sup> suggested that CLA affects the formation of prostaglandins, specifically PGE2, based on several laboratory studies. According to research by Sebedio *et al.* (1997) <sup>[51]</sup>, CLA-9 and CLA-10 are both elongated and desaturated in ways similar to those of linoleic acid, which provides precursors for probable eicosanoids generated from CLA.

Although the mechanisms of the physiological actions of CLA are not yet fully clear, a possible mechanism has been suggested by Pariza *et al.* (2000) <sup>[45]</sup>, who proposed that CLA can reduce the production of eicosanoids by decreasing the amount of arachidonic acid (C20:4 n-6). CLA is regarded as an anti-inflammatory and anti-cancer drug because eicosanoids contribute to the synthesis of cytokines, which in turn have an impact on inflammation (Pariza *et al.*, 2000; Belury, 2002b) <sup>[45, 11]</sup>.

### The Role of CLA in Lipid Metabolism

It is commonly known that providing dairy ruminants with dietary supplements of CLA can increase the amount of CLA in their milk (Shingfield & Griinari, 2007) <sup>[52]</sup>. However, CLA supplementation reduces milk fat in dairy ruminants, particularly in sheep and cows (Baumgard *et al.*, 2001; Bauman *et al.*, 2008) <sup>[9, 39]</sup>. This is mostly because it reduces lipid production.

According to a study by Vyas *et al.* (2013), the de novo fatty acid synthesis of dairy cows was decreased by CLA infusion into the abomasum. According to Perfield *et al.* (2007) [46], who investigated the effect of CLA on cows' milk fat, a rise in CLA-9 was associated with a decrease in milk fat yield. The supplementation of CLA-10 also decreased the de novo synthesis of fatty acids and the desaturation of 18:0 via  $\Delta$ 9-desaturase (Perfield *et al.*, 2007) [46].

Bauman *et al.* (2008) <sup>[39]</sup>, reported that CLA-10 has also been shown to reduce milk fat in both ruminants and nonruminants. Research conducted on nursing sheep (Lock *et al.*, 2006; Sinclair *et al.*, 2007; Lock *et al.*, 2008) <sup>[40, 54, 39]</sup> revealed that CLA-10 supplementation decreased the generation of milk fat similar to that seen in dairy cows. Hussein *et al.* (2013) <sup>[27]</sup> also found that lower expression of mammary genes involved in lipid production in dairy sheep is linked to the effect of CLA on milk fat depression. CLA decreased the milk fat output and percentage by almost 23% in their study. Lactating goats' milk fat is decreased when lipid-encapsulated CLA-10 is supplemented (Lock *et al.*, 2008) <sup>[39]</sup>.

According to a study on the adipose and mammary tissues of mice (Kadegowda *et al.*, 2013) [31], supplementing nonruminant animals with CLA-10 also lowers their milk fat. According to their findings, mice given 37 mg/day of CLA-10 supplementation had a 44% lower milk fat concentration on day 10 postpartum than on day 6 postpartum. They also concluded that CLA primarily affects the mammary tissues

through changes in phospholipid biosynthesis and cellular signaling pathways (Kadegowda *et al.*, 2013) [31]. However, the fatty acid content of meat is also influenced by dietary CLA

Dietary CLA is reported to reduce the amount of unsaturated fatty acids in poultry meat, according to Du *et al.* (2001). They discovered that dietary CLA alters the composition of fatty acids, increasing the proportion of saturated fatty acids while reducing the levels of arachidonic, linoleic, and oleic acids in fat. The primary causes of meat's elevated saturated fatty acid (SFA) and decreased monounsaturated fatty acid (MUFA) content are these alterations in fatty acid composition.

Stearoyl-CoA desaturase-1 (SCD-1), a crucial enzyme involved in lipogenesis, has its gene expression inhibited by supplementing with mixed isomers of CLA (Choi *et al.*, 2000) <sup>[17]</sup>. In order to provide MUFA that is required for incorporation into the sn-2 position of triglycerides, SCD-1 catalyzes the  $\Delta 9$ -cis desaturation of several fatty acid substrates, such as palmitoyl and stearoyl-CoA (Park *et al.*, 2000) <sup>[45]</sup>.

### Conclusion

This paper reviewed several potential health benefits of conjugated linoleic acids (CLAs) supplementation. These potential health benefits have been studied primarily in animal models, to help our understanding the metabolic pathways of CLAs and their role in human health and consequently in farm animal. CLA isomers have been found to possess antioxidant properties, scavenging free radicals and protecting against oxidative stress. It also shows anti-carcinogenic effects on chemically induced tumors in various animal models, including the mammary gland, skin, and colon. CLAs have a positive impact on cardiovascular health by reducing the participation of lipids that develop atherosclerosis. CLA supplementation has been shown to increase the levels of PGF2α and cause a 10% increase in the levels of C-reactive protein (CRP), a circulatory inflammation marker that helps in predicting CVD.

Additionally, CLAs have been found potentially modulating immune function and inflammation response properties by reducing the production of eicosanoids and decreasing inflammation. CLA is also associated with enhancing insulin sensitivity, which can help in the prevention and management of type II diabetes. CLA plays a key role in gene expression of lipogeneses enzymes in both ruminants and non-ruminants, supplementation of CLA is associate with milk fat depression in dairy cows, sheep and goat, and increase saturated fatty acid in poultry meat by influencing the mechanism by which these lipids metabolized in farm animals.

In conclusion, this review paper report several research results that support the potential health benefits of CLA in both animal and humans. It also provides evidence on the significant role of CLAs as an antioxidant reagent, anticarcinogenic, immune system and inflammation, oxidative stress, and lipid metabolism

### **Conflict of Interest**

Not available

### **Financial Support**

Not available

### Reference

1. Albers R, Wielen VDR, Brink E, Hendriks HFJ, Taran

- DVN, Mohede ICM. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immune function in healthy men. Eur J Clin Nutr. 2003;57(4):595-603.
- Ali Y, Kadir A, Ahmad Z, Yaakub H, Zakaria ZA, Somchit M. Antioxidant activity of conjugated linoleic acid isomers. Conf Anim Health Hum Saf. Malaysia; 2009.
- 3. Ali YM, Kadir AA, Ahmad Z, Yaakub H, Zakaria ZA, Abdullah MN. Free radical scavenging activity of conjugated linoleic acid as single or mixed isomers. Pharm Biol. 2012;50(6):712-9. DOI: 10.3109/13880209.2011.621714.
- Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signalling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. DOI: 10.1155/2014/360438.
- Bauman D, Baumgard L, Corl B, Griinari JM. Biosynthesis of conjugated linoleic acid in ruminants. Proc Am Soc Anim Sci. 1999;77:1-15.
- Bauman D, Corl B, Peterson D. The biology of conjugated linoleic acids in ruminants. In: Advances in Conjugated Linoleic Acid Research. Vol. 2, 2<sup>nd</sup> Ed. Champaign (USA): AOCS Press; 2003, p. 146-73.
- Bauman DE, Perfield JW, Harvatine KJ, Baumgard LH. Regulation of fat synthesis by conjugated linoleic acid: Lactation and ruminant model. J Nutr. 2008;138:403-9.
- 8. Bauman DE, Griinari JM. Nutritional regulation of milk fat synthesis. Annu Rev Nutr. 2003;23:203-27. DOI: 10.1146/annurev.nutr.23.011702.073408.
- Baumgard LH, Sangster JK, Bauman DE. Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). J Nutr. 2001;131(6):1764-9.
- 10. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 2007;87:245-313. DOI: 10.1152/physrev.00044.200.
- 11. Belury MA. Inhibition of carcinogenesis by conjugated linoleic acid: Potential mechanisms of action. J Nutr. 2002;132(10):2995-8. DOI: 10.1093/jn/131.10.2995.
- 12. Belury MA. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu Rev Nutr. 2002;22:505-531. DOI: 10.1146/annurev.nutr.22.021302.121842.
- 13. Benjamin S, Spener F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr Metab (Lond). 2009:6:36.
- 14. Benjamin S, Prakasan P, Sreedharan S, Wright AD, Spener F. Pros and cons of CLA consumption: An insight from clinical evidences. Nutr Metab (Lond). 2015;12:4. DOI: 10.1186/1743-7075-12-4.
- 15. Brown A. Selected measures of health in women fed conjugated linoleic acid-enriched from organic, pasture-fed cattle [Thesis]. Iowa: IOWA State University; 2008, p. 89-99.
- 16. Chen BQ, Xue Y, Liu JR, Yang YM, Zheng YM, Wang XL, Liu RH. Inhibition of conjugated linoleic acid on mouse forestomach neoplasia induced by benzo(a)pyrene and chemopreventive mechanisms. World J Gastroenterol. 2003;9(1):44-49. DOI: 10.3748/wjg.v9.i1.44.
- 17. Choi Y, Kim YC, Han YB, Park Y, Pariza MW, Ntambi

- JM. The trans-10, cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase gene expression in 3T3-L1 adipocytes. J Nutr. 2000;130:1920-
- Conte G, Dimauro C, Serra A, Macciotta NPP, Mele M. A canonical discriminant analysis to study the association between milk fatty acids of ruminal origin and milk fat depression in dairy cows. J Dairy Sci. 2018;101:6497-510. DOI: 10.3168/jds.2017-13941.
- Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci. 2020;103(9):7655-81. DOI: 10.3168/jds.2019-17662.
- 20. Di Cristofano M, Ferramosca A, Di Giacomo M, Fusco C, Boscaino F, Luongo D, *et al.* Mechanisms underlying the hormetic effect of conjugated linoleic acid: focus on Nrf2, mitochondria and NADPH oxidases. Free Radic Biol Med. 2021;167:276-286. DOI: 10.1016/j.freeradbiomed.2021.03.015.
- 21. Du M, Ahn DU, Nam KC, Sell JL. Volatile profiles and lipid oxidation of irradiated cooked chicken meat from laying hens fed with diets containing conjugated linoleic acid. Poult Sci. 2001;80:235-41.
- 22. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505:335-43. DOI: 10.1038/nature12985.
- 23. Griinari JM, Bauman DE. Milk fat depression: Concepts, mechanisms and management applications. In: Sejrsen K, Hvelplund T, Nielsen MO, editors. Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress. Wageningen (Netherlands): Wageningen Academic Publishers; 2006. p.383-411.
- 24. Ha Y, Grimm N, Pariza M. Anticarcinogens from fried ground beef: Heat-altered derivatives of linoleic acid. Carcinogenesis. 1987;8(12):1881-7.
- 25. Halliwell B. Oxidative stress and cancer: Have we moved forward? Biochem J. 2007;401:1-11.
- Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16:1323-36. DOI: 10.1089/ars.2011.4123.
- 27. Hussein M, Harvatine KH, Weerasinghe WM, Sinclair LA, Bauman DE. Conjugated linoleic acid-induced milk fat depression in lactating ewes is accompanied by reduced expression of mammary genes involved in lipid synthesis. J Dairy Sci. 2013;96(6):3825-34. DOI: 10.3168/jds.2013-6576.
- 28. IP C, Banni S, Angioni E, Carta G, McGinley J, Thompson HJ, *et al.* Alterations in rat mammary gland leading to a reduction in cancer risk by conjugated linoleic acid (CLA)-enriched butter fat. J Nutr. 1999;129:2135-42.
- 29. IP C, Chin SF, Scimeca JA, Pariza MW. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res. 1991;51(22):6118-6124.
- 30. IP C, Dong Y, Ip MM, Banni S, Carta G, Angioni E, *et al.* Conjugated linoleic acid isomers and mammary cancer prevention. Nutr Cancer. 2002;43:52-8.
- 31. Kadegowda AK, Burns TA, Pratt SL, Duckett SK. Inhibition of stearoyl-CoA desaturase 1 reduces lipogenesis in primary bovine adipocytes. Lipids. 2013;48:967-76. DOI: 10.1007/s11745-013-3823-1.
- 32. Kelley D, Simon V, Taylor P, Rudolph IL, Benito P, Nelson GJ. Dietary supplementation with conjugated

- linoleic acid increased its concentration in human peripheral blood mononuclear cells, but did not alter their function. Lipids. 2001;36(7):669-674.
- 33. Kelley NS, Hubbard NE, Erickson KL. Conjugated linoleic acid isomers and cancer. J Nutr. 2007;137:2599-607
- 34. Lamarche B, Desroches S. Metabolic syndrome and effects of conjugated linoleic acid in obesity and lipoprotein disorders: The Quebec experience. Am J Clin Nutr. 2004;79(6):1149S-52S.
- 35. Larsson SC, Bergkvist L, Wolk A. High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. Am J Clin Nutr. 2005;82(4):894-900
- 36. Larsson SC, Bergkvist L, Wolk A. Conjugated linoleic acid intake and breast cancer risk in a prospective cohort of Swedish women. Am J Clin Nutr. 2009;90(3):556-60.
- 37. Lewis GP. Immunoregulatory activity of metabolites of arachidonic acid and their role in inflammation. Br Med Bull. 1983;39:243-8.
- 38. Li Y, Watkins BA. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids. 1998;33:417-25.
- 39. Lock AL, Rovai M, Gipson TA, de Veth MJ, Bauman DE. A conjugated linoleic acid supplement containing trans-10, cis-12 conjugated linoleic acid reduces milk fat synthesis in lactating goats. J Dairy Sci. 2008;91(9):3291-9. DOI: 10.3168/jds.2008-1071.
- 40. Lock AL, Teles BM, Perfield JW, Bauman DE, Sinclair LA. A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J Dairy Sci. 2006;89:1525-32.
- 41. McCann SE, IP C, IP MM, McGuire MK, Muti P, Edge SB. Dietary intake of conjugated linoleic acids and risk of breast cancer: The Western New York Exposures and Breast Cancer Study. Cancer Epidemiol Biomarkers Prev. 2004;13(9):1480-4.
- 42. McGuire M, McGuire M. Conjugated linoleic acid (CLA): A ruminant fatty acid with beneficial effects on human health. J Anim Sci. 2000;77(E-Suppl):1.
- Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: Evidence and speculation. Proc Soc Exp Biol Med. 2000;223(1):8-13. DOI: 10.1046/j.1525-1373.2000.22302.x.
- 44. Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001;40(4):283-98.
- 45. Park Y, Storkson J, Ntambi J, Cook M, Sih C, Pariza M. Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives. Biochim Biophys Acta. 2000;1486:285-92.
- 46. Perfield JW, Lock AL, Griinari JM, Saebo A, Delmonte P, Dwyer DA, *et al.* Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J Dairy Sci. 2007;90:2211-8.
- 47. Piperova LS, Teter BB, Bruckental I, Sampugna J, Mills SE, *et al.* Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J Nutr. 2000;130:2658-74.
- 48. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of cardiovascular events: An 8-year follow-up of 14,719

- initially healthy American women. Circulation. 2003;107(3):391-397.
- 49. Risérus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans-10, cis-12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men. Diabetes Care. 2002;25(9):1516-1521.
- 50. Risérus U, Vessby B, Ärnlöv J, Basu S. Effects of cis-9, trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr. 2004;80(2):279-283.
- 51. Sebedio JL, Juaneda P, Dobson G, Ramilison I, Martin JC, Chardigny JM, Christie WW. Metabolites of conjugated isomers of linoleic acid (CLA) in the rat. Biochim Biophys Acta. 1997;1345:5-10.
- 52. Shingfield KJ, Griinari JM. Role of biohydrogenation intermediates in milk fat depression. Eur J Lipid Sci Technol. 2007;109:799-816.
- 53. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents. Nat Rev Mol Cell Biol. 2020;21:363-83. DOI: 10.1038/s41580-020-0230-3.
- 54. Sinclair LA, Lock AL, Early R, Bauman DE. Effects of trans-10, cis-12 conjugated linoleic acid on ovine milk fat synthesis and cheese properties. J Dairy Sci. 2007;90:3326-35.
- 55. Subedi L, Timalsena S, Duwadi P, Thapa R, Paudel A, Parajuli K. Antioxidant activity and phenol and flavonoid contents of eight medicinal plants from Western Nepal. J Ethnopharmacol. 2014;155(2):104-12. DOI: 10.1016/S0254-6272(15)30067-4.
- 56. Tholstrup T, Raff M, Straarup EM, Lund P, Basu S, Bruun JM. An oil mixture with trans-10, cis-12 conjugated linoleic acid increases markers of inflammation and lipid peroxidation compared with cis-9, trans-11 in postmenopausal women. J Nutr. 2008;138(8):1445-51.
- 57. Vyas D, Moallem U, Teter B, Kia FAR, Erdman RA. Milk fat responses to butterfat infusion during conjugated linoleic acid-induced milk fat depression in lactating dairy cows. J Dairy Sci. 2013;96:5861-72. DOI: 10.3168/jds.2012-5861.
- 58. Whigham LD, Cook ME, Atkinson RL. Conjugated linoleic acid: Implications for human health. Pharmacol Res. 2000;42(6):503-510.

### **How to Cite This Article**

Sweidan R. The role of conjugated linoleic acid in farm animal. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(10):96-100.

### **Creative Commons (CC) License**

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.