

International Journal of Veterinary Sciences and Animal Husbandry

ISSN: 2456-2912 NAAS Rating (2025): 4.61 VET 2025; 10(10): 23-28 © 2025 VET

www.veterinarypaper.com Received: 12-07-2025

Accepted: 15-08-2025

R Ravikumar

Associate Professor, Department of Veterinary Pathology, Veterinary College and Research Institute, Theni, TANUVAS, Tamil Nadu, India

J Selvarai

Professor and Head, Department of Veterinary Pathology, Veterinary College and Research Institute, Orathanadu, Theni, TANUVAS, Tamil Nadu, India

T Lurthu Reetha

Professor and Head, Department of Veterinary Microbiology, Veterinary College and Research Institute, Orathanadu, TANUVAS, Tamil Nadu, India

S Balakrishnan

Professor and Head, Department of Veterinary Public Health and Epidemiology, Veterinary College and Research Institute, Orathanadu, TANUVAS, Tamil Nadu, India

R Thangathurai

Professor and Head, Department of Veterinary Pathology, Veterinary College and Research Institute, Tirunelveli, TANUVAS, Tamil Nadu, India

D Basheer Ahamad

Professor and Head, Department of Veterinary Pathology, Veterinary College and Research Institute, Theni, TANUVAS, Tamil Nadu, India

Corresponding Author: R Ravikumar

Associate Professor, Department of Veterinary Pathology, Veterinary College and Research Institute, Theni, TANUVAS, Tamil Nadu, India

Histopathological lesions of brain and bone marrow of Lymphoproliferative Diseases (LPDs) in commercial layer chicken

R Ravikumar, J Selvaraj, T Lurthu Reetha, S Balakrishnan, R Thangathurai and D Basheer Ahamad

DOI: https://www.doi.org/10.22271/veterinary.2025.v10.i10a.2595

Abstract

A total of 155 suspected cases of lymphoproliferative diseases (LPDs) like Marek's Disease (MD), Lymphoid Leucosis (LL) and Avian Reticuloendotheliosis Virus (REV) from 25 commercial layer chicken farms were studied in and around Namakkal District and Thalaivasal (Salem District). The age groups affected for MD affected was 36 to 45 wks., LL was 46 to 55 wks and REV was 20 wks respectively. The clinical signs of LPDs affected chicken showed lameness, forward and backward paralysis and torticolis. In MD suspected 52 brain and 24 bone marrow cases, each one showed (1/52: 1. 92% and 1/24: 4.16%) MD positive by histopathological (HP) examination and the lesion score was arrived like score 0-51 cases; score 2-1 case for brain and score 0-23 cases; score 3-1 case for bone marrow respectively. In LL suspected 3 brain and 5 bone marrow cases, brain-1 and bone marrow-3 (1/3: 33. 33% and 3/5: 60.00%) showed LL positive by HP and the lesion score was score 0-2 cases; score 1-1 case for brain and score 0-2 cases; score 1-2 cases; score 5-1 case for bone marrow respectively. In 1 case of REV suspected brain showed positive by HP and the lesion score was score 1-1. HP lesions of MD affected brain showed focal moderate PLC infiltration was seen in the perivascular area as well as a nodule in the neurophil. In addition, diffuse mild to moderate congestion, focal satellitosis, gliosis, axonal spheroids, perivascular cuffing, perivascular oedema and neuronal vacuolation were also noticed without PLC infiltration and bone marrow showed multifocal moderate PLC infiltration in the haematopoietic tissue. HP lesions of LL affected brain showed focal mild MLC infiltration with lymphoblastic tumour emboli in a blood vessel of the cerebral meninges and bone marrow showed focal mild MLC infiltration in the haemopoietic tissue. HP lesions of REV affected brain showed gliosis with multifocal mild perivascular cuffing with lymphocytes.

Keywords: Layer chicken, Lymphoproliferative diseases, Marek's disease, lymphoid leucosis, Reticuloendotheliosis, Histopathology

Introduction

Lymphoproliferative Diseases (LPDs) of chicken *viz*. Marek's Disease (MD), Lymphoid Leucosis (LL) and Reticuloendotheliosis (RE) pose major threat to poultry industry by causing severe economic loss due to heavy mortality and reduced performance.

Marek's Disease (MD) is an economically important and common lymphoproliferative disease of chicken caused by alpha herpesvirus, a cell associated virus that induces T-cell lymphomas, polyneuritis and immunosuppression (Ravikumar *et al.*, 2024) [8].

Lymphoid Leucosis (LL) had been the most common form of leucosis/sarcoma group of diseases seen in the field flocks, Incidence of LL was reported in 5.20% chicken flocks (Ravikumar *et al.*, 2019) ^[7].

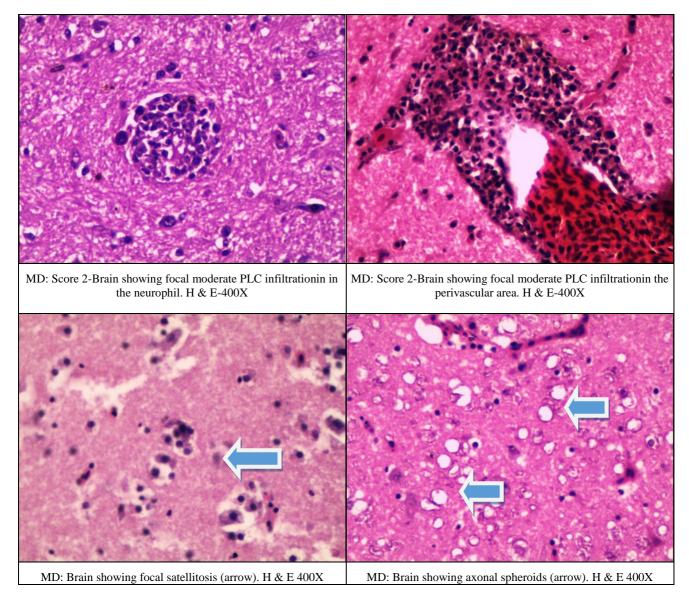
Reticuloendotheliosis (RE) is a pathologic syndrome caused by the reticuloendotheliosis virus (REV) of retrovirus group. Various reports explained that REV as contaminant of Marek's disease and Fowl pox vaccines which resulted in delayed growth, feather abnormalities, anemia and leg paralysis (Ravikumar *et al.*, 2024) [8].

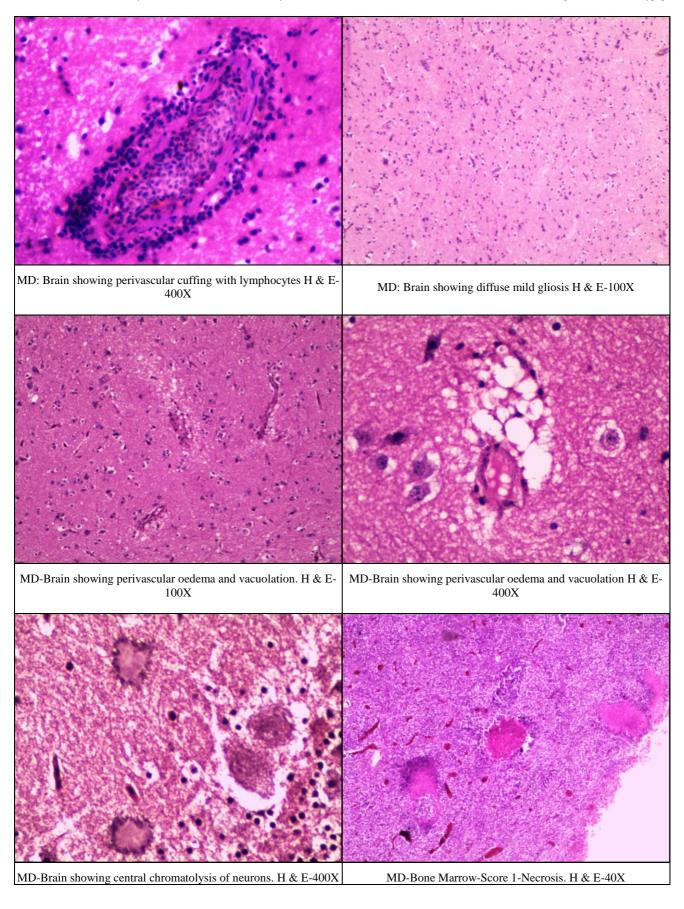
The main aim of the present paper is to describe the histopathological lesions of brain and bone marrow of lymphoproliferative diseases (LPDs) in commercial layer chicken.

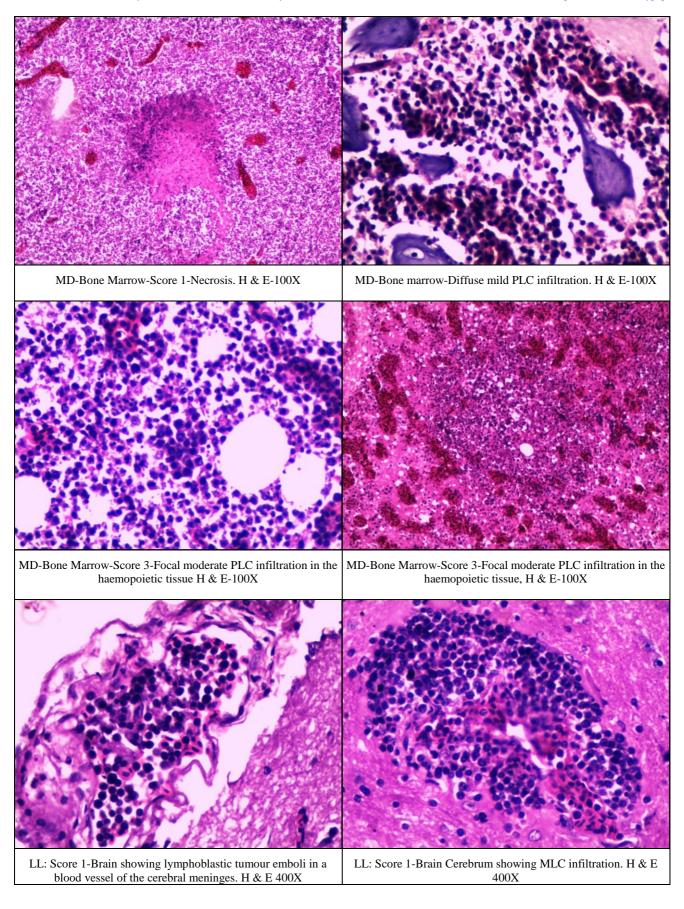
Materials and Methods Case History

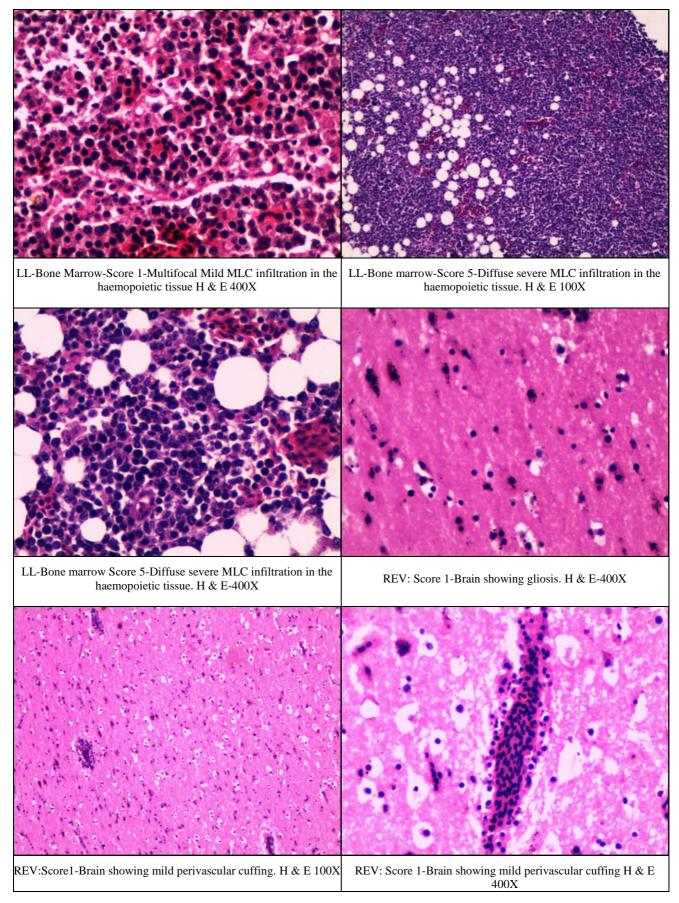
A total of 155 suspected cases of lymphoproliferative diseases (LPDs) from 25 commercial layer chicken farms were studied in and around Namakkal District and Thalaivasal (Salem District). The clinical signs of LPDs affected chicken showed lameness, forward and backward paralysis and torticolis.

A detailed necropsy of all birds was carried out and tissue samples of brain and bone marrow were fixed in 10% neutral buffered formalin and a routine histological technique was performed (Suvarna *et al.*, 2013) ^[9].


Results


The age groups affected for MD affected was 36 to 45 wks., LL was 46 to 55 wks and REV was 20 wks respectively. In MD suspected 52 brain and 24 bone marrow cases, each one showed (1/52: 1. 92% and 1/24: 4.16%) MD positive by histopathological (HP) examination and the lesion score was arrived like score 0-51 cases; score 2-1 case for brain and


score 0-23 cases; score 3-1 case for bone marrow respectively.


HP lesions of MD affected brain showed focal moderate pleomorphic lymphoid cell (PLC) infiltration was seen in the perivascular area as well as a nodule in the neurophil. In addition, diffuse mild to moderate congestion, focal satellitosis, gliosis, axonal spheroids, perivascular cuffing, perivascular oedema and neuronal vacuolation were also noticed without PLC infiltration and bone marrow showed multifocal moderate PLC infiltration in the haematopoietic tissue.

In LL suspected 3 brain and 5 bone marrow cases, brain-1 and bone marrow-3 (1/3: 33. 33% and 3/5: 60.00%) showed LL positive by HP and the lesion score was score 0-2 cases; score 1-1 case for brain and score 0-2 cases; score 1-2 cases; score 5-1 case for bone marrow respectively. HP lesions of LL affected brain showed focal mild monomorphic lymphoid cell (MLC) infiltration with lymphoblastic tumour emboli in a blood vessel of the cerebral meninges and bone marrow showed focal mild MLC infiltration in the haemopoietic tissue. In 1 case of REV suspected brain showed positive by HP and the lesion score was score 1-1. HP lesions of REV affected brain showed gliosis with multifocal mild perivascular cuffing with lymphocytes.

Discussion

In the present study, the brain showed focal moderate PLC infiltration in the perivascular area as well as a nodule in the neurophil. In addition, diffuse mild to moderate congestion, focal satellitosis, gliosis, axonal spheroids, perivascular cuffing, perivascular oedema and neuronal vacuolation were also noticed without PLC infiltration. Similar findings were

also made by earlier workers (Mohana, 2014) [3]. In MDV affected birds, blood vessel alteration was the first change detected in the brain followed by attachment of lymphocytes into the endothelium and their tendency to cross the vessel wall and form lymphoid aggregates in the Virchow-Robin space This might be the cause for the occurrence of infiltration of lymphocytes in the perivascular area and

vascular congestion in the present study. The neuronal vacuolation was associated with leakage of serum proteins like albumin and IgG leading to oedema and nervous signs in the affected birds (Swayne *et al.*, 1989a) [10].

In the present study, the bone marrow showed multifocal moderate PLC infiltration in the haematopoietic tissue. Similar finding was also made by Mohana (2014) ^[3]. In adult layers, the metastatic lymphoma replaced or destroyed the normal bone marrow structure leading to anaemia (Haridy *et al.*, 2009) ^[1].

In the present study, the brain showed focal mild MLC infiltration with lymphoblastic tumour emboli in a blood vessel of the cerebral meninges (Score 1). Nair and Fadly (2013) [4] stated that LL tumours are focal and multicentric in origin. Yamagiwa and Itakura (1973) [11] reported that lymphocytic type proliferating cells were present frequently in the blood vessels

In the present study, focal mild MLC infiltration (Score 1) and diffuse severe MLC infiltration was noticed in the haemopoietic bone marrow tissue (Score 5). However, Payne (2001) [6] stated diffuse or focal LL tumours in the bone marrow.

Brain showed mild gliosis with multifocal mild perivascular cuffing with lymphocytes. However, perivascular and focal accumulations of mononuclear cells and reticuloendothelial cells in the cerebral hemisphere, central white matter of cerebellum and white matter core of the cerebellar folds of the brain were observed by Motha and Egerton (1987) [2].

Conclusion

In the present study the age groups affected for MD affected was 36 to 45 wks., LL was 46 to 55 wks and REV was 20 wks respectively and produce histopathological lesion in brain and bone marrow. Further, the LPDs cause immunosuppression which leads to increased susceptibility to secondary infection and sub-optimal response to vaccinations.in commercial layer chicken which leads to great economic loss to poultry farmers Since control measures against LPDs vary according to the etiology, a precise diagnosis of the LPDs caused by avian oncogenic viruses is of utmost importance. So early diagnosis of LPDs infection is at most importance to increase the profitability of the poultry farmers (Nouri *et al.*, 2001) ^[5].

Acknowledgements

The authors are thankful to the authorities of the Department of Veterinary Pathology, VCRI, and Orathanadu for providing the facilities.

Conflict of Interest

Not available

Financial Support

Not available

Reference

- 1. Haridy M, Goryo M, Sasaki J, Okada K. Pathological and immunohistochemical study of chickens with coinfection of Marek's disease virus and chicken anaemia virus. Avian Pathol. 2009;38(6):469-486.
- 2. Motha MXJ, Egerton JR. Vertical transmission of reticuloendotheliosis virus in chickens. Avian Pathol. 1987;16(1):141-147.
- 3. Mohana N. Molecular and pathological studies of Marek's disease in vaccinated commercial layer chicken [MVSc Thesis]. Chennai: Tamil Nadu Veterinary and

- Animal Sciences University; 2014.
- 4. Nair V, Fadly AM. Leucosis/Sarcoma Group. In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DI, Nair V, editors. Diseases of poultry. 13th Ed. Ames: Iowa State University Press; 2013, p. 553-92.
- 5. Nouri M, Gharagozlou MJ, Azarabad H. Lymphoid leucosis and coligranoluma in a budgerigar (*Melopsittacus undulatus*). Int J Vet Res. 2011;5(1):5-8.
- Payne J. Retroviridae. In: Jordan F, Pattison M, Alexander D, Faragher T, editors. Poultry diseases. 5th Ed. St. Louis: WB Saunders; 2001, p. 253-254.
- 7. Ravikumar Y, Reddy B, Narmatha M, Ramesh G, Mahesh B, Lakshman M. Lymphoid leucosis and Marek's disease in chicken: Gross and histopathological studies. Int J Livest Res. 2019;9(5):140-144.
- Ravikumar R, Selvaraj J, Reetha LT, Balakrishnan S, Thangathurai R, Ahamad BD. Occurrence of lymphoproliferative diseases in commercial layer chicken. Int J Vet Sci Anim Husbandry. 2024;9(SP-4):88-91.
- 9. Suvarna SK, Layton C, Bancroft JD. Bancroft's theory and practice of histological techniques. 7th Ed. London: Churchill Livingstone; 2013.
- Swayne DE, Fletcher OJ, Schierman LW. Marek's disease virus-induced transient paralysis in chickens. 1. Time course association between clinical signs and histological brain lesions. Avian Pathol. 1989;18(3):385-396.
- 11. Yamagiwa S, Itakura C. Pathological studies on avian leucosis: Lymphatic leukemia and germ cell sarcoma in chickens. JPN J Vet Sci. 1973;35(1):11-23.

How to Cite This Article

Ravikumar R, Selvaraj J, Reetha TL, Balakrishnan S, Thangathurai R, Ahamad DB. Histopathological lesions of brain and bone marrow of Lymphoproliferative Diseases (LPDs) in commercial layer chicken. International Journal of Veterinary Sciences and Animal Husbandry. 2025;10(10):23-28.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.