Serotonin profile in balinese kintamani dogs

Siswanto and Sri Kayati Widyastuti

DOI: https://doi.org/10.22271/veterinary.2024.v9.i3h.1470

Abstract
Dogs have various behaviors, such as docile, spoiled, quiet and fierce (Aggressive). Kintamani dogs have behavior that is not too aggressive but also not too tame. The results of previous research show that aggressive behavior is related to serotonin levels in the blood. Serotonin is a protein compound that functions as a neurotransmitter. The lack of research on serotonin levels that underlie aggressive behavior in Kintamani dogs, Bali, is the reason this proposal was made. The research will be carried out on 15 male and 15 female Kintamani dogs. The aim of the research was to determine the profile of normal serotonin levels in the blood of Kintamani dogs. The Elisa method is used to determine serotonin levels in the blood. Student's T-test was used to compare serotonin levels between males and females. A significance level of 5% was used. Data analysis using SPSS for Windows version 25. The results show serotonin levels in male Kintamani dogs 248.7 ng/ml, SD. 60.5 and females 303.2 ng/ml. SD. 58.9. The t-test shows that it is significantly difference.

Keywords: Serotonin, blood, dog

Introduction

Much research has been carried out on Kintamani dogs, such as behavior by Puja et al., (2000) [5] and exterior characteristics of Balinese Kintamani dogs (Sanjaya et al., 2016) [6] and Gunawan, et al., (2012) [7] regarding problematic behavior in Kintamani dogs. However, there is still little observation of the serotonin profile in the blood.

Serotonin is a monoamine chemical substance (C10H12N2O) that functions as a neurotransmitter. This compound is synthesized in serotonergic neurons in the central nervous system and enterochromaffin cells in the digestive tract. Serotonin, a blood protein, is a complex molecular organic substance composed of amino acids (Hughes, 2013) [8].

Serotonin is produced by nerve cells, is found mostly in the digestive system, some is also found in platelets and throughout the central nervous system. Serotonin functions as a messenger and biochemical regulator, while in the nervous system it acts as a local neurotransmitter at the synapse. As a paracrine or hormonal modulator, serotonin is involved in the blood coagulation process. Serotonin is synthesized from the essential amino acid L-tryptophan. In its function as a neurotransmitter which is basically a chemical messenger, serotonin is responsible for carrying, enhancing and modulating signals between neurons (Hillman, et al., 2005) [9].

Serotonin is formed when the amino acid L-tryptophan is broken down in the liver by the enzyme tryptophan hydroxylase.
This breakdown process produces 5-hydroxytryptophan (5-HTP), which is a direct precursor of serotonin. Most serotonin in the body is produced in the gastrointestinal (GI) tract and taken up by intestinal cells (Enterochromaffins) and blood platelets. As a hormone in the body, serotonin is involved in a variety of functions including digestion and appetite control, blood clotting, and sexual function. Serotonin's greatest effect on the digestive tract is facilitating peristalsis, the rhythmic contractions of the intestine that occur during digestion. Only 10% of serotonin in the body is made in the brain. After the breakdown of tryptophan, 5-HTP travels through the bloodstream, crosses the blood brain barrier, and enters brain tissue. Once in the brain, 5-HTP is converted into 5-hydroxytryptamine (5-HT), better known as serotonin. When serotonin levels are balanced, you feel calm, you sleep better and you feel less stressed. Decreased serotonin effects cause depression or apathy, restless thoughts and insomnia/disturbed sleep (McKee and McKee, 2003).

Serotonin, which is used in the brain as a neurotransmitter, must be produced in the brain, because this compound cannot pass through the blood-brain barrier. Sometimes, concentration decreases due to chronic stress, medical conditions, and lifestyle habits. In these cases, serotonin boosters such as 5-HTP supplements, which are able to cross the blood brain barrier, can be used to try to increase serotonin. Serotonin will be broken down by the monoamine oxidase enzyme to form 5-hydroxyindoleacetic acid (5-hydroxyindoleacetic acid = 5-HIAA) (Fitzgerald et al., 1990)

Materials and Methods
Animal
The research was conducted in Sukawana village, Kintamani subdistrict, Bangli district, Bali province, Indonesia. The total sample used was 30 Kintamani dogs, including 15 males and 15 females. Dogs aged 2-4 years in good clinical condition. The use of dogs as an experiment was approved by the Animal Ethics Committee of the Faculty of Veterinary Medicine, Udayana University.

Sample Collection
Sampel darah diambil dari vena cephalica sebanyak kurang lebih 2 mililiter menggunakan spuit ukuran 3 mililiter. Selanjutnya darah dipindahkan ke dalam tabung penampung darah (Blood collecting tube) berantikoagulan EDTA kapasitas 3 ml. Ditaruh dalam cooling box dan dibawa ke laboratorium untuk ditentukan kadar serotoninnya. Kadar serotonin dan monoamin oksidase ditentukan menggunakan metode Enzyme-linked Immunosorbent Assay (ELISA) indirect.

Enzyme-linked Immunosorbent Assay (ELISA)
Samples were analyzed immediately after collection by indirect Enzyme-linked Immunosorbent Assay (ELISA) method according to the manufacturer's protocol. Analysis was carried out at the Veterinary Center, Denpasar, Bali, Indonesia.

Data analysis
Student's T-test was used to compare serotonin levels between males and females. A significance level of 5% was used. Data analysis using SPSS for Windows version 25.

Results and Discussion
The results show serotonin levels in male Kintamani dogs 248.7 ng/ml SD. 60.5 and females 303.2 ng/ml, SD. 58.9. The t test shows that it is significantly difference. Complete results are presented in Table 1. below.

Table 1: Serotonin levels in Kintamani dogs

<table>
<thead>
<tr>
<th>Animal Number</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>270</td>
<td>215</td>
</tr>
<tr>
<td>2</td>
<td>228</td>
<td>306</td>
</tr>
<tr>
<td>3</td>
<td>245</td>
<td>270</td>
</tr>
<tr>
<td>4</td>
<td>271</td>
<td>435</td>
</tr>
<tr>
<td>5</td>
<td>247</td>
<td>345</td>
</tr>
<tr>
<td>6</td>
<td>246</td>
<td>273</td>
</tr>
<tr>
<td>7</td>
<td>254</td>
<td>297</td>
</tr>
<tr>
<td>8</td>
<td>323</td>
<td>235</td>
</tr>
<tr>
<td>9</td>
<td>267</td>
<td>226</td>
</tr>
<tr>
<td>10</td>
<td>66</td>
<td>286</td>
</tr>
<tr>
<td>11</td>
<td>287</td>
<td>308</td>
</tr>
<tr>
<td>12</td>
<td>245</td>
<td>352</td>
</tr>
<tr>
<td>13</td>
<td>201</td>
<td>382</td>
</tr>
<tr>
<td>14</td>
<td>249</td>
<td>305</td>
</tr>
<tr>
<td>15</td>
<td>332</td>
<td>314</td>
</tr>
<tr>
<td>Average</td>
<td>248.7</td>
<td>303.2</td>
</tr>
</tbody>
</table>

Note: different superscript letters in different columns, indicating significance ($p < 0.05$).
The t test for serotonin levels showed a significant difference ($p<0.05$) in male dogs' serotonin levels being lower than female dogs. This difference is because males and females have different serotonin profiles. Scandurra, et al., (2018) \[13\] stated that aggressiveness and boldness are described as behavioral syndromes, where males are more aggressive and bold than females. Genetically, male dogs have more aggressive behavior than female dogs. This picture shows that the serotonin levels of male Kintamani dogs are lower than those of females. In research conducted by Alberghina et al., (2016) \[14\] the results showed that serum 5-HT levels were not significantly influenced by gender, age, or environmental conditions. However, our research shows that serotonin levels in male dogs are significantly lower in females. This difference can be caused by other factors such as different environmental conditions.

Recently, Bochiş et al., (2022) \[12\] stated in research that small, medium to large body dogs had serotonin levels between 89.61 ng/mL in aggressive dogs and 112.78 ng/mL in calm dogs. Meanwhile, our research showed that serotonin levels in Kintamani Bali dogs averaged 248.7 ng/mL in males and 303.2 in females. This difference in results does not indicate that all Kintamani dogs have a calm character, but it seems that serotonin levels in various types of dogs have a varied picture, according to their respective genes. Rossado et al., (2010) \[2\] in their research found that aggressive dogs were 278.5 ng/ml and non-aggressive 387.4 ng/ml and Amat et al., (2013) \[1\] stated serotonin levels in English cocker spaniels 318 ng/ml.

Serotonin is commonly associated with aggressive behavior and anxiety, for example, attention deficit, hyperactivity, disorder-like (ADHD-like). González-Martínez et al., (2023) \[14\] stated that dogs clinically classified as ADHD-like showed lower concentrations of serotonin and dopamine. This opinion supports that serotonin affects aggression in dogs.

Conflict of Interest

Not available

Financial Support

Not available

References

13. Scandurra A, Alterisio A, Cosmo D, D’Aniello B. Behavioral and Perceptual Differences between Sexes in

How to Cite This Article

Creative Commons (CC) License
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.