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Abstract 

The increasing demand for food products derived from animals worldwide has raised serious concerns 

about the hygiene and overall quality of animal food. In the animal food production sector, traditional 

techniques of monitoring, inspection and quality control are labor-intensive, time-consuming and subject 

to human error. In this perspective, Artificial intelligence (AI) has become a revolutionary technology 

that provides novel methods to improve the safety and quality of animal food products. This review 

provides an overview of the applications of AI in the animal food industry, focusing on its pivotal role in 

quality and safety of food. We delve into various aspects of AI implementation, including computer 

vision, biosensor, machine vision, ultrasonic sensing, Internet of things and electronic method. The 

review explores the application of AI in quality control, disease detection, feed optimization and supply 

chain management in the animal food industry. By utilising the potential of AI, the animal food industry 

can enhance food safety, improve product quality and meet the ever-increasing demands of a global 

consumer base concerned about the source and safety of their food. This review aims to throw light on 

the diverse AI applications within the animal food industry, highlighting the potential to revolutionize the 

sector's quality and safety standards while driving innovation and sustainability in an increasingly 

interconnected world. 
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Introduction  

All living organisms on Earth depend on food as a key source of energy for their growth and 

survival. Food of high quality is essential to absorbing the nutrients required for the growth 

and development of body. People are consuming food in the form of meat, milk, fish, mutton, 

chevon, pork etc. Meat is the main source of protein found in animal food and is highly 

beneficial for mankind. Worldwide consumption of meat (beef, poultry, hog, and lamb) keeps 

rising each year [1]. Quality is influencing consumer’s purchase decision more and more as 

meat consumption rises [2]. Meat and meat products are susceptible to spoiling and 

microbiological risks such as Shiga-toxin-producing Escherichia coli O157:H7, 

Campylobacter jejuni, Yersinia enterocolitica, Salmonella enteritidis, Salmonella typhimurium 

and Listeria monocytogenes, and [3]. These risks may arise at various stages of processing in 

the meat production chain, including during the production, processing, distribution or 

preparation of the food, leading to foodborne outbreaks. Ensuring the health of consumers 

requires maintaining the quality and safety of meat from the farm to the fork, is also important 

to prevent zoonotic outbreaks and food poisoning associated with meat [4]. Therefore, food 

quality inspections and consumer safety assurances are now required, globally. As part of the 

industrial revolution, artificial intelligence (AI) improves the food production by lowering 

resource use and increasing production, quality and nutrition. [5].  

According to Kritthanawong et al. [6], AI is a branch of computer science that replicates human 

thought processes, learning capacities and knowledge stores. To meet the need for food, AI has 

been applied to supply chain management, food sorting, production development, food quality 

enhancement and good industrial hygiene. [7].  
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According to Talaviya et al. [8], AI is used to boost 

productivity while lowering costs and promoting ethical 

production and consumption. 

 

AI Technologies in Food quality management 

Computer vision system (CVS) for meat quality  

Cross-contamination in food processing and distribution 

facilities can result in food safety incidents, and there is 

plenty of scope for AI applications in food traceability 

systems in the future. [9]. A computer vision system based on 

CNN (Convolutional Neural Network) or ML (Machine 

Learning) models, such as SVM (Support Vector Machine), 

KNN (K-Nearest Neighbour) and J48 has been seen as a 

potential technique for automatic food classification, 

adulterant quantification and feature extraction [10]. As a result 

of the quick development of computer technologies, image 

processing and machine vision-based non-destructive 

detection systems have become widely used in the extraction 

of image-based characteristics and feature recognition related 

to meat quality detection. A computer vision system was 

created by Sun et al. [11] to test the quality of pork loin 

objectively. A CVS analyses and processes images using 

bionic human brains to create digital information that is 

subsequently utilised to track, identify and detect target 

objects. [12]. A computer, an industrial camera, an illumination 

system and an image processing software system are the main 

components of a typical CVS. [13]. Subsequently, a support 

vector machine (SVM) AI prediction model was developed to 

ascertain the colour of the pork and the grades of marbling 

quality. Liu et al. [14] investigated the possibility of using CVS 

to predict the intramuscular fat percentage of pork along with 

the development of stepwise regression and SVM models. In 

order to evaluate the freshness of beef, Arsalane et al. [15] used 

an embedded machine vision system based on digital signal 

processing (DSP). Principal component analysis (PCA) and 

SVM results demonstrated perfect prediction accuracies with 

new unknown samples. Additionally, few researches have 

been done to apply CVS to check meat problems. In a 2012 

study, Chmiel et al. [16] examined CVS's capability for 

spotting dark, firm, and dry (DFD) beef. L*, a* and b* colour 

components were discovered to have a substantial association 

with pH, which is an indicator to find DFD beef. Chmiel and 

Sowiski [17] assessed a CVS's performance in assessing meat 

colour to identify meat flaws caused by M. longissimus 

lumborum (LL) in commercial settings. They claimed that the 

CVS demonstrated strong potential for identifying PSE (pale, 

soft, exudative) and DFD as well as for categorising meat 

according to quality groups. 

 

AI in the manufacture of quality minced meat 

A new automatic minced meat production line design, 

utilising innovative meat milling methods, enable the 

appropriate level of grinding of raw materials for food 

preparation. This eliminates the need for traditional 

comminution equipment, it results in an increase in 

production intensity. To maintain consistent product quality, 

an online automatic control system incorporating AI methods 

is implemented in the minced meat production process, 

featuring automatic line design and single-stage comminution. 

Throughout operation, the system is flexible and trainable, 

adapting to variations in the properties of the raw materials as 

well as external impacts. It produces meat shavings with 

minimal particle size dispersion. The control system contains 

instruments for rapidly detecting the temperature and 

chemical composition of minced meat following 

comminution. In Automatic line design and single-stage 

comminution, precise time-based control ensures strict 

regulation of the minced meat production process and 

eliminates subjective assessments. This results in consistently 

production of high-quality finished meat products [18]. 

 

Application of Biosensors to Evaluate Quality of Meat  

Biosensors, also known as indication sensors, have been used 

as monitoring tools in the past few years to track various 

hazards, whether they are present in raw meat or occur 

throughout various stages of processing that determine the 

quality of the product. Over time, advancements in research 

and development have driven the use of biosensors at 

industrial or commercial levels for food. Freshness indicators, 

time-temperature integrators, microbial spoilage biosensors, 

nanosensors, barcodes, RFID (Radio Frequency 

Identification) tags, and other applications are among the 

many useful applications of biosensors. [19, 20]. 

 

Biosensors to detect contaminants, antibiotics residues in 

meat and meat products 

Hazardous food additives, veterinary medicine residues, 

herbicides, toxins, and antibiotics are just a few of the 

contaminants that can contaminate an entire batch and enter 

the food chain system at any stage of processing. The samples 

can be examined when all of the processing steps are 

complete using a variety of analytical techniques, including 

mass spectrometry, capillary electrophoresis and HPLC. 

These operations require expensive, complex equipment, 

expert staff assistance and expensive procedures. There is 

growing interest in the rapid, reliable and more sensitive 

identification of contaminants in the manufacturing processes 

itself to reduce the undesired hazard to consumers health. This 

can be done by utilising biosensor technology [21]. 

To find such drug residues, SPR (Surface Plasmon 

Resonance) is widely accepted technique in biosensors. 

Chloramphenicol and sulphonamide levels in various meat 

species, including pig, beef and chicken have been measured 

using the SPR [22]. A chemiluminescence-based sensor was 

created by Cai et al. [23] to detect benzimidazole residues in 

beef and mutton. This sensor can detect residues in just 18 

min and has an extremely high sensitivity. An aptamer-based 

electrochemical biosensor was created by Mohammad-

Razdari et al. [24] to identify sulfadimethoxine (SDM) in beef 

and poultry flesh. In comparison to about 12 h turnaround 

time required by standard microbiological assays, a luminous 

bacterial biosensor was able to screen a large number of 

chicken muscle samples for tetracycline in just 3 h [25]. Using 

an electrochemical biosensor, Staphylococcal enterotoxin B 

was found in milk and pork [26], and Trichothecene (T-2 toxin) 

was found in pork [27]. The nitrate levels in meat were 

calculated using the amperometric biosensor, revealing that 

this technology is straightforward and affordable with good 

accuracy and sensitivity with a response time of 10 sec [28]. 

Donkey meat samples in beef sausages were identified using 

SPR-based DNA biosensors with high sensitivity and 

specificity [29]. When applied up to 10% in biological samples, 

an electrochemical DNA biosensor was able to identify pork 

in food products [30]. Without the need of any genetic material 

extraction or amplification, an amperometric PCR-free 

electrochemical biosensor can identify the adulteration of beef 

meat with horse meat in less than an hour [31]. 
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Biosensors to identify microbial contamination in meat 

Food poisoning and other common diseases can result from 

food contamination, which is a concern to the world's public 

health. Cross-contamination in the food processing system or 

raw material contamination can result in microbial 

contamination [32]. To ensure microbiological safety and the 

rapid detection of pathogens in the food chain, a 

microbiological monitoring system is essential [33]. Besides 

traditional methods like bacterial colony counts, staining and 

methylene blue reduction tests, modern techniques such as 

ELISA, PCR and fluorescence detection are also used for 

microbial contamination detection [34]. Modern analytical 

techniques for microbiological identification typically require 

expensive equipment, highly trained staff and well-equipped 

laboratories. Results from these techniques can take up to 10 

days because they frequently require intensive sample 

preparation and processing, including enrichment and 

incubation phases [35-37]. Due to these drawbacks, novel in situ 

analysis techniques are required, which should provide 

improved sensitivity, accuracy, speed and specificity over 

existing techniques [38-40]. In recent times, highly sensitive and 

selective biosensors have become available as analytical 

instruments. These biosensors can identify toxins, their 

metabolites and limits that are safe for microbes in a variety 

of items. 

Biosensors are easy, affordable instruments that can quickly 

identify infections without the need for pre-enrichment 

procedures, unlike nucleic acid-based and immunological 

methods [41]. Nowadays, optical, electrochemical, 

photoelectrochemical and bioluminescence principles are 

frequently used to create user-friendly biosensors. [34]. Optical 

biosensors enable the real-time monitoring of microbial 

activity in food. By measuring microbial cell densities on the 

sensing site of the optical transducer surface, they can 

distinguish between different types of microorganisms, either 

by changes in signal or refractive index [42]. Among optical 

analysing techniques such as colorimetric, fluorescence, 

localised SPR and chemiluminescence SPR is widely 

employed as an optical biosensor [43]. In SPR, Bioreceptors on 

a metal surface transducer produce resonance when they 

interact with particular wavelengths of electromagnetic 

radiation. Refractive index changes significantly in response 

to bacterial cell interaction [35], making reflectance 

spectroscopy a useful tool for identifying target pathogens. 

Numerous studies highlight optical biosensors for detecting 

pathogens in meat products. In one, a fiber optic 

immunosensor detected L. monocytogenes in meat at 

concentrations up to 3 × 10² CFU/mL, employing robust 

immunomagnetic separation [44]. An aptamer-based fiber-optic 

biosensor successfully identified pathogenic L. 

monocytogenes in ready-to-eat meat products, distinguishing 

it from other non-pathogenic or pathogenic species [45]. Using 

localised SPR, Oh et al. [46] detected S. typhimurium from 

pork meat up to 4 log CFU/mL in 30 min. A multi-channel 

SPR biosensor was created by Zhang et al. [47] to detect three 

distinct foodborne pathogens, namely E. coli O157:H7, S. 

enteritidis, and L. monocytogenes, together in naturally 

contaminated food. In another experiment, fluorescence 

biosensors containing basic aptamers were used to precisely 

identify and extract Shigella sonnei bacteria from other 

enteric organisms such as E. coli and S. typhimurium [48]. 

Wang et al. [49] used lateral flow biosensors with multiple 

cross displacement amplification to obtain high specificity 

and sensitivity in detecting Shigella spp. in less than an hour. 

However, current limitations, including high costs, quality 

assurance concerns, stability disputes, sensitivity issues and 

instrumentation design, must be addressed before the 

widespread commercialization and application of optical 

biosensors. 

There are numerous electrochemical biosensors available that 

are based on antigen-bioreceptor interactions, including 

conductometric, potentiometric, amperometric and 

impedimetric ones. [47]. It has been reported that a composite 

electrochemical immunosensor made of chitosan and gold 

nanoparticles has a broad detection range of 1-4 Log 

CFU/mL, which helps with the accurate detection of 

Salmonella infection [50]. Similarly, Campylobacter spp. were 

detected from chicken meat by Morant-Miñana and Elizalde 
[51] using an electrochemical genosensor with thin-film gold 

electrodes. Che et al. [52] detected C. jejuni in samples of 

chicken and turkey meat using a fluorescent biosensor with a 

detection limit of 2.1 × 10⁴ CFU/mL. For C. jejuni, a major 

food-borne pathogen that causes fever and diarrhoea in 

consumers, prompt diagnosis is essential. 

Food-borne infections and poisons are well detected using 

nano-based sensors [35]. Yamada et al. [53] employed carbon 

nanotube-based biosensors to detect E. coli in 5 min with a 2 

log CFU/mL limit. A quartz crystal microbalance (QCM) 

biosensor, is characterised by the resonant frequency of quartz 

crystals, which exhibits high sensitivity for identifying and 

measuring microbial entire cells at low levels. By using 

QCM, C. jejuni (LOD: 1.30 log CFU/mL) and S. typhimurium 

(LOD: <100 CFU/mL) were detected in poultry meat samples 
[54, 49, 55]. Liu et al. [56] developed an impedance-based 

microfluidic biosensor to detect Salmonella serotypes B and 

D in turkey flesh that was fit for human consumption. The 

sensor showed selectivity against non-specific E. coli strains, 

differentiated between high quantities of inactivated 

Salmonella and very low levels of live Salmonella cells, and 

identified a low concentration of Salmonella (300 cells/mL) in 

less than an hour. A portable, low-cost paper-based DNA 

biosensor was used by Vizzini et al. [57] to identify 

Campylobacter spp. in poultry meat. The pathogen detection 

level of biosensors was 3 pg/µL of DNA, which is 

comparable to existing qPCR kits. 

 

Robotics in food security  

Recently, many slaughterhouses are now starting to 

implement automation and quality assessment sensors to the 

slaughter processing line to overcome insufficient human 

resources, improve the efficiency of the slaughter process and 

standardize meat quality. Depending on the animals to be 

slaughtered, different processing instruments and sensor 

technologies may be used; however, a standardised procedure 

design for a smart abattoir has not yet been developed. 

Slaughterhouses are being increasingly industrialised, using 

data analysis and collecting to stimulate growth and improve 

productivity. Thus, in order to meet production demands, 

abattoir automation is important and in order to maximise 

cost-effective equipment and systems, an optimised design 

appropriate for the size of each company is needed. The 

abattoir uses robotic technology to carry out a variety of tasks, 

including deboning, preparing carcasses and visceral 

laparotomy [58]. Robotic technology will need to be a key 

component of security system for the food industry in order to 

accomplish this. The robotics is also the part of AI and in the 

future, it will play important role in food production. This AI 

robotics system has produced germ free and high-quality 

meals [59]. 
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AI Technologies in Food processing management  

Machine vision for monitoring personal health and 

sanitation 

Machine vision is an automatic, non-destructive and cost-

effective technique which is based on neural networks used to 

determine whether personal protective equipment was worn 

or not. Deep learning is used to create two object detection 

models, YOLOv3 and the quicker R-CNN for the detection of 

face masks. During the spread of airborne diseases, in 

particular, this face mask detection technology is utilised to 

keep an eye on people wearing masks in public places [60], and 

it may also be employed in slaughterhouses and animal food 

processing units to maintain the personal health of the 

workers. 

 

Ultrasonic sensing and optical fluorescence imaging for 

cleaning 

Repairing and maintaining the production machinery in any 

food sector requires lots of time and money for cleaning 

resources. According to ongoing research studies, a system 

known as the self-optimizing clean-in-place (SOCIP) can 

shorten cleaning times and significantly reduce the resources 

required for cleaning, including water [61]. The AI technology 

uses features like optical fluorescence imaging and ultrasonic 

sensing to find even the smallest quantity of food residue and 

microbial waste in the apparatus. This helps the 

cleaning/maintenance procedures go as efficiently as possible. 

In addition, companies may utilise artificial intelligence for 

machine maintenance and periodic most effective working. It 

can quickly recognise any broken hardware and isolate it so 

that the damaged equipment may be replaced immediately. 

Since there is a much better system in place that provides 

early detection of any issue, this will ultimately lead to greater 

employee efficiency and human resource management [62]. 

 

Efficient supply chain management 

The operation of the food supply chain can be closely 

monitored by AI to reduce delay and increase profit margins 

in the food business. Additionally, this aids businesses in 

accurate forecasting for improved pricing and product stock 

management. AI has also been used to follow items from the 

farm to customers to provide transparency in response to 

growing concerns about it. With the introduction of this 

approach into food production and distribution, the flow of 

products will be as efficient and streamlined as feasible [63]. 

 

AI Technologies in Food safety management  

Automated food adulteration detection 

AI plays a significant role in quality control and food safety, 

and the food sector makes use of the most recent 

developments in this field. The food sector places a great 

value on product inspection, which includes classifying and 

grading food as well as making sure that food items are of a 

specified grade. When creating an artificial intelligence 

system to detect food contamination, the data required for 

analysis may arrive in two alternative formats. A vision-based 

model is constructed using the first type of data, and its major 

goal is to evaluate food product quality based on several 

parameters, such as colour, texture, size, form, morphological 

traits, etc. Through the use of machine learning (ML) models 

for data training, the products are classified according to their 

external appearance. In order to assess the chemical 

composition of food products, factors such as moisture, pH, 

pressure, temperature, humidity, viscosity and other related 

variables constitute the second type of data. The Internet of 

Things (IoT) can be used to gather data from different sensors 

for this purpose, and the contents of the food product are used 

to determine whether adulteration has occurred. Other 

contemporary devices, such as electronic tongue and 

electronic nose, collect this data and analyse it to assess the 

food quality [64]. 

 

IoT based food adulteration detection methods 

IoT and AI have shown to be crucial platforms for ensuring 

the security and safety of food. Using Internet of Things 

technology, a smart device for the adulteration detection 

system can be developed. By keeping an eye on food 

conditions and providing customers with up-to-date 

information, it might contribute to the food supply chain and 

raise food quality. The system operates in three steps: (i) 

Sense; (ii) Analyse and (iii) Predict. Data is gathered in phase 

one utilising a variety of sensors and may be utilised to record 

data. The development and implementation of an AI system 

that may utilise the information gathered from sensors will 

come next in phase two. The food quality system can be set 

up to monitor a variety of environmental conditions, including 

temperature, humidity, alcohol level and light exposure which 

may cause food to spoil. The smart decisions for the food 

adulteration detection system are recommended in phase three 

and anticipate the result if the food product is pure or 

contaminated. Food adulteration monitoring systems can be 

built on top of the ability to assess food quality [64]. 

 

Quality Control of Animal Food using Electronic methods 

Similar to the human nose and taste organs, the electronic 

tongue (E-Tongue) and electronic nose (E-Nose) are devices 

composed of a range of sensors. These systems are widely 

applicable in the detection of food adulteration because they 

combine complex data sets from E-Nose and E-Tongue 

signals with multivariate statistics to create quick and efficient 

tools for classifying, discriminating, recognising and 

identifying samples as well as predicting the levels of various 

compound concentrations. [64].  

Smell detection using an E-nose is even more accurate than 

with a human nose. This smart sensing device uses a range of 

gas sensors that overlap with the component of the pattern of 

reorganisation and applies the principle of chemical detection 

to determine the nature of the chemicals being studied. The 

electrical properties of the sensors that comprise the e-nose's 

detecting system alter when they come into touch with 

volatile molecules. The precise reaction that transforms the 

signals into digital values is recorded by the electronic 

surface. [65]. Computation is carried out using the collected 

data and the statistical models. It is widely used in the 

scientific community because it is able to detect dangerous 

gases in contaminated food that are impossible for the human 

nose to detect. 

The elements of liquid samples are identified, categorised, 

and measured using a multichannel taste sensor known as the 

E-Tongue. These sensors collect information about the 

samples and work similarly to the gustatory cells found in the 

taste buds of the tongue. A particular set of sensors is used to 

build the digital fingerprint and electrical impulses of 

sample that convey information about the components that are 

utilised as profile input by the data recognition system. Unlike 

liquids, where the food item's taste is taken into account, 

gases are evaluated based on the odour of the chemicals they 

release, and solid compounds are evaluated according to their 

texture, shape, colour, temperature, and optical 

characteristics. To study gaseous elements and liquid 
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compounds, respectively, these technical instruments mimic 

the tongue's gustatory receptors and the nose's olfactory 

system. [64]. 

Sensory instruments such as spectrophotometers and 

thermometers are used to analyse the solid objects. On the 

basis of classification and pattern recognition, ML and DL 

models can also be used to make predictions concerning the 

presence of adulterants in food. Additionally, it is possible to 

analyse other parameters including odour, taste, food flavour, 

aroma appearance and texture of the food from the prediction 

of the model [64]. Tables 1 and 2 provide descriptions of the 

some research that has been done in relation to these 

electronic approaches. 

 
Table 1: Application of E-nose with AI in food industries 

 

Application Objective AI technique Outcome/Impacts Reference 

Beef To categorise the samples of beef 
Adaptive FL system 

(AFLS); ANFIS 
94.28% Accuracy [66] 

Pork meat To distinguish frozen-thawed meat from fresh meat BPANN 85.1% Sensitivity and 97.5% specificity [67] 

Cow ghee 
To detect the adulteration of the margarine in cow 

ghee 
ANN ANN show high accuracy [68] 

Fish To categorise and detect the spoilage of fish ANN, PCA 96.87% Accuracy [69] 

Chicken 

meat 

To categorise the frozen-thawed and fresh chicken 

meat 
FK-NN FK-NN algorithm show high performance [70] 

Note: ANFIS- Adaptive Neuro Fuzzy Inference System, AFLS- Adaptive Fuzzy Logic System, BPANN-Back-Propagation Artificial Neural 

Network, ANN-Artificial Neural Network, PCA-Principal Component Analysis, FK-NN- Fuzzy K-nearest nighbors algorithm 

 
Table 2: Application of E-tongue with AI in food industries 

 

Application Objective AI technique Outcome/Impacts Reference 

Fish To determine the freshness of fish ANN, PCA 94.17% Accuracy [71] 

Milk To detect the adulteration of raw milk SVM 87% Accuracy [72] 

Note: ANN- Artificial Neural Network, PCA- Principal Component Analysis, SVM-Support Vector Machine, KNN-k-Nearest Neighbors, DT-

Decision Tree 

 

Application of AI in detection of Foodborne Pathogens 

In order to quickly detect bacterial growth and identify the 

correct species, a computational live bacteria detection system 

continuously captures coherent microscopy images of 

bacterial growth inside an agar plate with a diameter of 60 

mm by using deep neural networks to analyse these time-

lapsed holograms. When compared to EPA-approved 

methods, the system reduced the detection time by more than 

12 h. E. coli and total Coliform bacteria, such as Klebsiella 

aerogenes and Klebsiella pneumoniae subsp. pneumoniae, 

were readily found in water samples utilising the system. By 

pre-incubating the samples in growth media, these systems 

were able to attain a limit of detection (LOD) of 1 colony 

forming unit (CFU)/L in a total of 9 h of testing. This 

platform is very cost-effective and high-throughput, scanning 

the entire plate surface at a speed of 24 cm²/min, therefore it 

is well suited for integration with the current technologies 

used for bacterial identification on agar plates. This 

automated and cost-effective and deep learning-powered live 

bacteria detection device can revolutionise a variety of 

microbiological applications by significantly reducing the 

detection times and automating the identification of colonies 

without the need for professional assistance or labelling. [73]. 

As a pathogen identification tool, a machine learning-enabled 

paper chromogenic array (PCA) is used. The PCA is 

composed of a paper substrate that has been loaded with 23 

chromogenic dyes and dye combinations, which change 

colour when exposed to the volatile organic compounds found 

in pathogens of interest. Digitally recorded colour variations 

are used to train a multi-layer neural network (NN) so that it 

can accurately detect and quantify stain-specific pathogens 

with an accuracy of 91-95%. The trained PCA-NN system is 

capable of distinguishing between Escherichia coli, viable E. 

coli O157:H7, and other viable pathogens while concurrently 

recognising L. monocytogenes and E. coli O157:H7 on fresh-

cut romaine lettuce, which represents a realistic and complex 

environment. Enrichment, culturing and other invasive 

techniques are not needed with this procedure, which could 

facilitate non-destructive pathogen identification and 

detection on food. [74]. 

 

Advantages of AI in Quality and Safety of Animal Food  

The food industry is one of the many areas that AI is 

revolutionising. The production, processing and consumption 

of food are being revolutionised by the use of AI technology 

in the food industry. AI has the following benefits for the food 

industry: (1) Enhanced quality assurance: A major advantage 

of AI for the food business is better quality control. With a 

high degree of precision, the technology can identify and 

detect faults in food products. AI systems can analyse data 

from sensor and camera to find problems such as 

contamination, spoiling and other quality problems. (2) 

Enhanced production and processing efficiency: AI-powered 

robots have the potential to automate production and 

processing operations, boost efficiency, and save labour costs 

by revolutionising the way food is produced and processed. 

(3) Personalised nutrition and dietary advice: People may 

track their eating habits with AI-powered applications and 

gadgets, and AI algorithms can analyse data to deliver 

customised dietary and nutritional advice. This makes it 

possible for people to choose their diet with knowledge, 

which improves their health results. (4) Improved food safety 

and shelf life: Businesses are now able to predict shelf life 

and identify any safety risks through AI technology. Food 

manufacturers can make real-time adjustments to assure the 

safety and quality of their products by using the ability 

of algorithms to analyse data from sensors and cameras to 

detect changes in temperature, humidity, and other 

environmental conditions that might affect food safety and 

quality. (5) Better Customer Service: Food companies may 

offer round-the-clock customer support and help by utilising 

chatbots and AI-powered virtual assistants. This facilitates 

prompt and effective handling of consumer inquiries and 

grievances. 
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Future of AI in Animal Food Industry 

A significant expenditure in the food production and 

processing sector is required for the application of AI. 

Compared to man-based systems, AI-powered systems can 

more easily identify a range of problems in food production. 

Additionally, it has been noted that researchers are actively 

involved in this area of study. Some of the future perspectives 

of AI in animal food industry are: (1) Enhanced Sensory 

Evaluation - This can help in standardizing sensory 

evaluations and ensuring consistency in food product quality. 

(2) IoT Integration - Internet of Things devices in food 

processing and storage can provide real-time monitoring of 

critical parameters, ensuring optimal conditions and 

minimizing the risk of contamination. (3) Robotics for Food 

Processing - Robots can streamline food processing tasks, 

reducing human intervention and the potential for cross-

contamination. (4) Regulatory Compliance - Automating 

regulatory compliance processes, helping food manufacturers 

adhere to safety standards and maintain necessary 

documentation. (5) Global Collaboration - It will be crucial 

for governments, food safety organizations, and industry 

stakeholders to collaborate globally to establish common 

standards and best practices for AI implementation in the food 

industry.  

 

Conclusion 

AI is a very potent field that will continue to grow and have a 

gigantic impact on modern society. AI is becoming more 

significant because of its capacity to enhance waste 

management, food safety, and sanitary systems. AI is 

becoming more and more important in the food industry 

because of its ability to reduce waste, forecast product 

markets, enable efficient and effective monitoring around-the-

clock, improve sanitation, manage costs, and increase income. 

Public health surveillance, the prediction of preharvest food 

safety risk factors and the detection, identification and 

characterization of foodborne pathogens, comprise the 

majority of data and instances that offer significant evidence 

for the successful use of AI to food safety. 
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