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Abstract 

Nerve injuries, irrespective of tissue involvement, disrupt the continuity of nerve fibers, leading to 

compromised functionality. Mesenchymal stem cells (MSCs) have emerged as promising candidates for 

cell therapy across a spectrum of diseases, owing to their unique functional attributes including potent 

differentiation capacity, immunomodulation, and growth support. In particular, the secretome produced 

by Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) plays a pivotal role in their trans-differentiation 

into neural stem cells, thus creating a conducive microenvironment for nerve regeneration. Through the 

secretion of trophic factors, WJ-MSCs provide a nurturing, protective, and activating milieu that fosters 

the regeneration of damaged nerves, engaging both neuronal and non-neuronal cells. This synergistic 

interplay holds immense potential for accelerating nerve regeneration processes and augmenting 

functional recovery. This review underscores the therapeutic promise of WJ-MSCs in the realm of nerve 

regeneration, offering insights into their mechanisms of action and future directions for clinical 

applications. 
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Introduction  

Stem cells, distinguished by their ability for self-renewal, proliferation, differentiation, and 

tissue regeneration, play a pivotal role in biomedical research and therapeutic applications. 

They are broadly classified into embryonic and non-embryonic stem cells. Embryonic stem 

cells (ESCs), particularly pluripotent stem cells, possess the remarkable capacity to 

differentiate into various cell types. Despite their considerable therapeutic potential, concerns 

regarding their tumorigenicity and ethical considerations have hindered their clinical 

utilization (Blum and Benvenisty, 2008) [4]. 

Non-embryonic stem cells, also known as adult stem cells, exhibit multipotent or limited 

pluripotent capabilities compared to ESCs. These cells are derived from adult tissues such as 

bone marrow, fat, muscle, liver, skin, brain, dental pulp, retina, and orbicularis, as well as less 

mature sources like cord blood, cord tissue, placenta, and fetal body tissues such as pancreas 

and liver. The therapeutic potential of these cells is immense (Pittenger et al., 1999; Uchida et 

al., 2000; Gronthos et al., 2000; Minguell et al., 2001; Tuch, 2006) [46, 58, 20, 37, 56]. 

Initially, haematologists primarily concentrated on bone marrow mesenchymal stem cells 

(MSCs) because of their regenerative and immunomodulatory properties. However, MSCs 

derived from alternative sources, particularly Wharton's jelly of the umbilical cord tissue (WJ-

MSCs), have garnered attention for several reasons. These include their primitive nature, ease 

of expansion in vitro, capacity for multi-lineage differentiation, immunomodulatory and 

antioxidant actions, as well as their release of trophic factors (Fong et al., 2007; Garzon et al., 

2012; Lian et al., 2016) [14, 19, 32]. 

Wharton's jelly, the gelatinous connective tissue found in the umbilical cord, comprises 

myofibroblasts, collagen fibers, and stromal cells. Wharton's jelly-derived MSCs (WJ-MSCs), 

easily obtainable and cultured in vitro, demonstrate pluripotency and the remarkable ability to 

differentiate into various mesenchymal and non-mesenchymal cell types.  
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These include neurons, osteocytes, adipocytes, chondrocytes, 

cardiomyocytes, and hepatocytes (Wang et al., 2004; Saben et 

al., 2014; Ranjbaran et al., 2018; Mitchell et al., 2003; Fu et 

al., 2006; Fong et al., 2007; Moshrefi et al., 2010; Cardoso et 

al., 2012; Venugopal et al., 2011; Puranik et al., 2012; Singh 

et al., 2013; Sreekumar et al., 2014; Uranio et al., 2014; 

Eswari et al., 2016) [62, 49, 48, 38, 17, 14, 39, 7, 61, 47, 53, 53, 59, 13]. 

In various diseases, including neurodegenerative disorders, 

MSC-based therapies have shown promising potential for 

immune modulation and tissue repair (Uccelli et al., 2006; 

van Velthoven et al., 2010; Satheesan et al., 2020) [57, 60]. This 

versatility and therapeutic potential make WJ-MSCs an 

exciting prospect for regenerative medicine and the treatment 

of a wide range of medical conditions. 

 

Isolation, culture and expansion of WJ MSCs in vitro 

Various protocols are available for isolating cells from 

Wharton's jelly (WJ), which differ based on the removal of 

the umbilical artery and vein and the method of enzymatic or 

mechanical dissection. Enzymatic disruption involves the use 

of collagenase, trypsin, or hyaluronidase, followed by 

purification and culture of dissociated cells (Wang et al., 

2004) [62]. On the other hand, mechanical dissection entails 

cutting tissue into small pieces or segments, which are then 

transferred to culture plates until cells migrate to the plastic 

bottom of the plate (Mitchell et al., 2003; La Rocca et al., 

2009) [38, 29]. 

Cells derived from WJ require specific culture conditions, 

with media containing either low or high glucose levels and 

supplemented with platelet-rich plasma or other additives 

such as bovine fetal bovine serum (Mitchell et al., 2003; 

Eswari et al., 2016; Ranjbaran et al., 2018; Satheesan et al., 

2020) [38, 13, 48, 50]. Studies have highlighted the faster doubling 

rate of umbilical cord Wharton's jelly-derived MSCs 

compared to fetal fibroblasts (Moshrefi et al., 2010) [39]. 

Additionally, it has been observed that WJ-MSCs have 

shorter doubling times than adult bone marrow mesenchymal 

cells, suggesting a relatively immature nature of WJ-MSCs 

compared to adult stromal cells (Campagnoli et al., 2001; 

Baksh et al., 2007; Karahuseyinoglu et al., 2007; Troyer and 

Weiss, 2008) [6, 2, 23, 55]. 

In efforts to optimize isolation procedures, Venugopal et al. 

(2011) [61] replaced porcine trypsin with TrypLE Express, a 

trypsin alternative devoid of animal and human components, 

eliminating the need for neutralization with serum-containing 

media. Garzon et al. (2012) [19] reported fluctuating cell 

viability across passages, with the highest viability observed 

at the 5th and 6th passages. Liang et al. (2016) [32] emphasized 

the stability of early and intermediate-stage WJ-MSCs, 

cautioning against the effects of serial passaging on lineage-

specific differentiation. 

Regarding morphology, WJ-MSCs exhibit diverse shapes, 

including spindle-shaped, rectangular, cuboidal, and 

fibroblast-like cells, as well as parallel arrays of confluent 

cells (Eswari et al., 2016; Ranjbaran et al., 2018; Satheesan et 

al., 2020) [38, 48, 50], which align with observations in bone 

marrow-derived MSCs (Colter et al., 2001; Hanabdari et al., 

2016) [11, 24].  

 

Clonogenicity of WJ-MSCs 

The formation of cell colonies from single cells serves as a 

tangible demonstration of the self-renewal capacity inherent 

in stem cell populations (La Rocca et al., 2009) [29]. Factors 

such as coating density and oxygen content play crucial roles 

in determining the frequency and rate of colony formation 

from Wharton's jelly mesenchymal stem cells (WJ-MSCs). 

Studies involving WJ-MSCs derived from goat, buffalo, and 

sheep consistently demonstrate significant alkaline 

phosphatase activity and colony formation, underscoring the 

robustness of these cells (Sreekumar et al., 2014; Eswari et 

al., 2016; Satheesan et al., 2020) [53, 13, 60]. 

 

Wharton's jelly MSCs induced NSCs in vitro  

Mitchell et al. (2003) [38], Fu et al. (2004; 2006) [18, 17], and 

Satheesan et al. (2020) [50] have noted distinctive 

morphological transformations in Wharton's jelly 

mesenchymal stem cells (WJ MSCs), such as cell body 

retraction and process elaboration by the third day of 

cultivation. By the fifth day, numerous WJ MSCs exhibited 

granular formations resembling Nissl bodies, indicating the 

initiation of neural differentiation. 

Various protocols have successfully induced human umbilical 

cord (UC) WJ MSCs into neural stem cells (NSCs). 

Murakami et al. (2017) [40] employed commercial 

Mesenchymal Stem Cell Neurogenic Differentiation Medium, 

while Kruminis-Kaszkiel et al. (2020) [26] utilized NSCs 

induction medium composed of DMEM/F12 with Glutamax 

supplemented with FBS, Penicillin/Streptomycin, N2 

supplement, and EGF. 

In a recent investigation by Satheesan et al. (2020) [50], WJ-

MSCs at passages 3 to 5 were cultured to near confluence and 

subjected to treatment with Neuronal Conditioned Medium 

(NCM) collected from ovine fetal brain suspension culture. 

This intervention effectively facilitated the transition of WJ-

MSCs into neurons, yielding swift and substantial outcomes. 

Regarding the morphology of WJ MSCs induced NSCs, cell 

body contraction and process elaboration were observed, with 

numerous cells showing granular formations akin to Nissl 

bodies by the fifth day. Murakami et al. (2017) [40] cultured 

UC WJ MSCs using commercially available mesenchymal 

stem cell neural gene differentiation medium and NSCs 

induction medium, following the approach outlined by 

Kruminis-Kaszkiel et al. (2020) [26]. 

In another recent study by Satheesan et al. (2020) [50], WJ-

MSCs at passages 3 to 5 were exposed to neuronal-

conditioned medium (NCM) obtained from fetal sheep brain 

suspension cultures. This treatment led to the transformation 

of WJ-MSCs into neurons, characterized by rounded cell 

bodies with multiple neurite-like extensions, resembling the 

morphology of neural stem cells. GFAP-positive cells 

exhibited a stellate morphology without the elongated 

processes of neuronal marker-positive cells. Peng et al. (2011) 

[44] induced a spindle-like shape in WJ-MSCs akin to 

Schwann cells by treating them with basic fibroblast growth 

factor, platelet-derived growth factor, and forskolin. 

Documented notable morphological changes in MSCs within 

hours after neural induction, including the assembly and 

extension of long dendritic processes. Guan et al. (2014) [21] 

and Satheesan et al. (2020) [50] observed significant 

morphological alterations in WJ-MSCs during neural 

induction, including the emergence of multiple dendrites and 

a singular axon-like process extending from the cell body, 

along with granular structures reminiscent of Nissl 

substances. Please refer to Figure 1 for a visual 

representation. 

 

Expression of neuronal markers by UCT-WJMSCs and 

induced NSCs 

Mitchell et al. (2003) [38] observed that Human UC-MSCs 

spontaneously produced Nestin, a biomarker indicative of 
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neural progenitors, even without exposure to differentiation 

cues. Additionally, WJ-induced NSCs displayed GFAP-

positive cells, whose expression was detected in untreated WJ 

cells but was notably elevated post-induction. Satheesan et al. 

(2020) [50] found that upon induction of neuronal 

differentiation in WJ-MSCs, there was an increase in the 

expression of neuronal marker genes such as β III tubulin, 

nestin, and GFAP. 

Frausin et al. (2015) [15] reported the capability of WJ-MSCs 

to differentiate into neuron-like cells in vitro, demonstrating 

both neuronal morphological and biochemical properties and 

expressing typical neuronal proteins like nestin and β-tubulin. 

Chen et al. (2016) [10] noted high expression of Nestin and 

NeuroD1 in developed neural stem cells derived from human 

UC, contrasting with low expression in undifferentiated 

MSCs, suggesting the activation of molecular mechanisms 

related to neuronal function in differentiated MSCs. 

Lian et al. (2016) [32] showed that at early (P7) and 

intermediate (P14) stages, WJ MSCs exhibited positivity for 

nestin or βIII tubulin, with neural induction significantly 

enhancing the expression of these markers in both groups, 

confirmed via immunofluorescence and quantitative PCR. 

Expression of nestin was highlighted as crucial for MSC 

differentiation into neurons, with serum in the medium found 

to reduce nestin expression, as determined by RT-PCR to 

assess the expression of NSE and GFAP genes (Zhu et al., 

2002) [69]. 

Murakami et al. (2017) [40] demonstrated the expression of 

neurogenic markers such as III-tubulin and Notch in cells 

before and after induction of neurogenic differentiation, with 

higher levels observed in differentiated cells through RT-PCR 

analysis. 

Satheesan et al. (2020) [50] further indicated that WJMSCs 

underwent a mesenchymal-to-nervous fate change in the 

presence of neuronal-conditioned medium, as confirmed by 

immunocytochemistry and RT-PCR, showing elevated 

expression of nestin, III-tubulin, and neural lineage GFAP 

markers in induced NSCs compared to uninduced WJ-MSCs. 

 

 
 

Fig 1: Diagram showing isolation and neuronal induction of umbilical cord tissue-wharton jelly mesenchymal stem cells. A. Processing of 

umbilical cord B. Collagenase Trypsinisation of extracted Wharton jelly C. Plating/culturing D. Migration of WJ- MSCs (200x) E. Induced 

Neuronal stem cell (200x) using neuronal conditioned medium 
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Potential of WJ induced NSCs in neurodegenerative 

disorders: Fu et al. (2006) [17] reported that the transplantation 

of human umbilical cord MSCs partially alleviated 

amphetamine-induced rotational behavior caused by lesions, 

suggesting a potential application of UC-MSCs in Parkinson's 

disease treatment. When administered intravenously, UC-

MSCs were shown to migrate spontaneously to damaged or 

inflamed areas (Chamberlain et al., 2007) [8], enabling 

targeted action with limited side effects, while most cells were 

retained in the lungs. Lim et al. (2007) [34] demonstrated that 

transplanting canine UC blood-derived MSCs restored 

neurological function in spinal cord-injured dogs, suggesting 

a therapeutic approach for spinal cord injury. 

MSCs are known for their low immunogenicity and ability to 

modulate immune activation and provide trophic signals for 

tissue healing (Kurtz, 2008; van Velthoven et al., 2010) [28, 60]. 

Although the identification and characterization of neural 

stem cells (NSCs) in companion animals remain largely 

unexplored, studies have successfully isolated and cultured 

NSCs from various animal sources (Agarwal et al., 2014; 

Kumar et al., 2014; Lija et al., 2019) [1, 27, 33]. However, 

traditional methods of obtaining NSCs from brain tissue have 

limitations due to purity issues, technical difficulties, and 

ethical concerns. 

MSC-induced NSCs have emerged as a promising alternative 

source for NSC transplant studies due to their low 

immunogenicity, multiple sources, and minimal ethical 

controversies. Umbilical cord MSC transplantation has shown 

promise in repairing the injured central nervous system. 

Enhancing the differentiation of MSCs into neuron-like cells 

is crucial in regenerative medicine and tissue engineering 

(Fong et al., 2007; Lian et al., 2016) [14, 32]. Satheesan et al. 

(2020) [50] demonstrated that umbilical cord tissue-derived 

WJ-MSCs possess stem cell properties, exhibit neuronal 

phenotypes in vitro, and are readily available and expandable. 

While each methodology for MSC differentiation into 

neurons has its advantages and disadvantages, improving 

trans-differentiation efficiency is essential for the success of 

future clinical applications of WJ MSCs. Further research is 

needed to ensure that neurons derived from MSCs using 

specific protocols retain normal nerve function. 

 

Conclusion 

Umbilical cord Wharton's jelly-derived MSCs possess several 

advantageous characteristics, including their ready 

availability, stem cell properties, abundance of progenitor 

cells, and ability to be expanded and maintained in culture. 

Additionally, these MSCs have demonstrated the capacity to 

develop neuronal phenotypes in vitro. Moreover, research 

suggests that WJ MSCs exhibit trans-differentiation potential, 

and their secretomes indicate their suitability as candidates for 

advanced cell-based therapies targeting neurodegenerative 

diseases. 

Given these attributes, WJ MSCs and their derived NSCs hold 

significant promise for various therapeutic and 

biotechnological applications in neuroregenerative medicine. 

Their potential to differentiate into neural cell types opens 

avenues for innovative treatments targeting neurological 

disorders. Additionally, their ability to secrete beneficial 

factors further underscores their potential for facilitating 

tissue repair and regeneration in the central nervous system. 

Therefore, harnessing the capabilities of WJ MSCs and their 

derivatives represents a promising approach in the ongoing 

quest to develop effective therapies in neuroregenerative 

medicine.  
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