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Abstract 

Genome-wide association studies (GWAS) have been extensively used to identify genetic variants 

affecting production traits in a variety of livestock species. One of the biggest obstacles in performing 

GWAS is accurately selecting the most promising single-nucleotide polymorphisms (SNPs). A huge 

advantage of SNPs as genetic markers is their relatively low mutation rate (1 × 10−9 for SNPs and 

1 × 10−5 for microsatellites), even distribution across all chromosomes, ease of implementation in high-

throughput genotyping technologies and simple results standardization procedures. The standard disease 

and quantitative trait association tests can be carried out for linear and logistic regression models 

allowing for multiple binary or continuous covariates having both the main effects and 

interactions.Breeding plans can be created to enhance the frequency of advantageous alleles in the 

population by taking advantage of the identification of genomic areas that have favourable effects on 

mastitis incidence by virtue of expression of immune system related genes. 
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1. Introduction  
Using high throughput genotyping technology, genome-wide association studies (GWAS) link 
hundreds of SNPs to observable traits and clinical problems (Pearson and Manolio, 2008) [1]. 
Contrary to gene expression research, where comparatively smaller sample sizes are sufficient, 
GWA investigations need for a large sample size (Ziegler et al., 2008) [2]. GWAS have been 
successful in identifying the genetic variants consistently associated with the common 
complex studies, but explaining the amount of heritability by these risk alleles still faces a 
limitation, which may be caused by genetic heterogeneity and small sample sizes (Waltoft et 
al., 2015) [3]. Breeding plans can be created to enhance the frequency of advantageous alleles 
in the population by taking advantage of the identification of genomic areas that have 
quantitative effects on a trait. This is especially crucial for qualities with low h2 that are 
difficult to routinely document, including disease resistance (Tiezzi et al., 2015) [4]. Although 
GWAS have benefits such as not requiring prior knowledge of gene function and not requiring 
assumptions about the type of variant involved (Hirschhorn et al., 2005) [5], they also have 
significant drawbacks, such as the possibility of false-positive and false-negative results and 
the lack of SNP variation in the population being studied (Pearson and Manolio, 2008) [1]. 
Replication of results in independent samples has been an important method to identify true-
positives from false-positives (Chanock et al., 2007) [6]. GWAS have been extensively used to 
identify genetic variants and QTL affecting production traits in a variety of livestock species 
(Jiang et al., 2010; Bush and Moore, 2012; Li et al., 2011) [7, 8, 9]. GWAS are a potent tool for 
examining the genetic architecture of complex traits. Due to a high number of loci having 
minor effects (Visscher et al., 2012; Wood et al., 2014; Fang et al., 2017) [10, 11, 12], classical 
GWAS have only partially succeeded in illuminating the genetic architecture of complex traits 
(Deng et al., 2019) [13]. Gene-based or pathway-based GWAS, which combines genetic 
information for all SNPs in a gene or pathway to enhance the capability to find novel genes 
and subsequently generate more valuable and informative results (Neale and Sham, 2004; 
Wang et al., 2010; Xia et al., 2017) [14, 15, 16] proved to be a novel approach to overcome this 
limitation. However, there are certain problems that make this research more challenging, such 
as differences in enrichment results between software tools, bias in enrichment analyses 
caused by pathway membership, and some unidentified relationships between linked genes 
(Deng et al., 2019) [13]. 
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Genome Wide Association Studies (GWAS) 

Since its introduction by Klein and colleagues in 2005 [17], 

GWAS has been widely used to study a variety of human 

disease conditions, and its use in the livestock industry is 

expanding as well (Freebern et al., 2020; Pegolo et al., 2018; 

Wang et al., 2013; Wray et al., 2008) [18, 19, 20, 21]. Although 

GWAS have benefits, such as the lack of assumptions about 

the type of variant involved and the lack of prior knowledge 

about gene function, they also have significant drawbacks, 

such as the potential for false-positive and false-negative 

results and the lack of SNP variation in the population under 

study (Pearson and Manolio, 2008) [1]. Replication of results 

in separate samples has been a key tactic in separating true-

positives from false-positives. The correct p-value threshold 

for statistical significance must be determined in order to 

distinguish between actual false positive and false negative 

results (Kaler et al., 2019) [22]. Despite the fact that a 

conventional p-value criterion of 5 × 10-8has been 

recommended for more than 1 million SNPs examined, it has 

not been revised for lower allele frequency spectrum utilised 

in many recent GWAS and sequencing studies being 

undertaken globally (Fadista et al., 2016) [23]. The Table 2.1 

shows different GWAS conducted for mastitis in various 

livestock species. 

 
Table 1: GWAS conducted for mastitis 

 

S. No Species No. of Samples Reference(s) 

1. HF cows 103585 Tiezzi et al., 2015 [4] 

2. Chinese Holstein cattle 2093 Wang et al., 2015 [24] 

3. HF cows 40 Siebert et al., 2017 [25] 

4. Nordic Holstein cattle 5147 Cai et al., 2018 [26] 

5. Danish HF cows 993 Welderufael et al., 2018 [27] 

6. Chinese Holstein cows 383 Yang et al., 2019 [28] 

7. HF cows 224 Kurz et al., 2019 [29] 

8. German Black Pied cattle 1062 Meier et al., 2020 [30] 

9. Portuguese Holstein cattle 1338 Silva et al., 2020 [31] 

10. Holstein cows 471 Miles et al., 2021 [32] 

11. Dutch HF 266 Lee et al., 2021 [33] 

12. Local dairy sheep 1813 Sutera et al., 2021 [34] 

13. Assaf sheep 1894 Oner et al., 2021 [35] 

14. Murrah Buffalo 96 Jaglan et al., 2023 [36] 

 

Correction for multiple testing in GWAS 

Different statistical techniques, including as the Bonferroni 

correction, False Discovery Rate, Permutation test, and 

Bayesian approaches, have been proposed to account for 

repeated testing in GWAS (Kaler et al., 2019) [22]. 

Additionally, a different method uses Genomic Control 

corrected p values, which are based on the idea of genome-

wide significance (Bush and Moore, 2012) [8]. The Bonferroni 

correction is the most conservative one because it assumes 

that every genetic variant tested is independent of the other 

genetic variants being tested (Kaler et al., 2019) [22]. All of 

these techniques reduce type-1 errors (false positives), but to a 

certain extent they also increase type-2 errors (false 

negatives). 

 

Single Nucleotide Polymorphisms (SNPs) 

SNP markers are DNA sequences that only contain one base 

changed, with a typical alternative of two nucleotides at a 

certain place. The least frequent allele must have a frequency 

of 1% or more in order for such a base location with sequence 

alternatives in genomic DNA to be regarded as an SNP 

(Vignal et al., 2002) [37]. SNPs are often bi-allelic systems, 

which indicates that a population typically has only two 

alleles. As a result, compared to multiallelic microsatellite 

markers, the information value per SNP marker is smaller 

(Beuzen et al., 2000) [38]. They make up for their lower 

information carriage relative to other markers by being widely 

and densely dispersed across genomes. Additionally, SNPs 

have an advantage over microsatellites in terms of genetic 

markers due to their relatively low mutation rate (1 × 10−9 for 

SNPs vs 1 × 10−5for microsatellites), even chromosomal 

distribution, ease of implementation for high-throughput 

genotyping technologies, and straightforward result 

standardisation procedures (Gurgul et al., 2019) [39]. Correctly 

identifying the most promising single-nucleotide 

polymorphisms (SNPs) for follow-up is one of the greatest 

challenges of conducting genome-wide association studies 

(GWAS). Several association tests are conducted 

simultaneously across the genome and the resultant p-values 

or test statistics compared and usually ranked to obtain the 

most promising SNPs (Tabangin et al., 2009) [40]. Conserved 

non-coding regions (CNCs) present in introns and intergenic 

regions are related to regulation of gene function (Yang et al., 

2018) [41], however, the variations found in these regions do 

not directly alter the amino acid sequence, but is influencing 

the regulation of gene expression and indirectly has some 

effects on biological functions and disease occurrence in 

mammals (Patrushev and Kovalenko, 2014) [42]. 

 

Genome Wide SNPs Identification 

The complete genome must be sequenced in order to identify 

SNPs across the genome, which will reveal a great deal of 

repetitive, meaningless information. Additionally, the 

bioinformatics assembly is highly difficult and expensive. 

Technically, whole genome sequencing is not required for 

SNP genotyping because genetic markers within a gene or 

genomic region might have linkage disequilibrium levels as 

high as 95% to 100%. Instead, tagged SNPs will be chosen 

for data analysis. Jiang et al. (2012) [43] when using an 

appropriate NGS technology platform, RAD-seq approaches 

for SNP identification can be 35 times less expensive than 

whole genome sequencing methods (Davey et al., 2011) [44]. 

 

Genomic Sub-Sampling 

Genomic Subsampling refers to the study of a portion of a 

particular organism's entire genome. To choose a portion of a 

genome for second-generation sequencing analysis, two basic 

strategies have been devised. The first method enriches the re-

sequencing target for particular regions of interest that are 

chosen either by PCR amplification or by hybridization to 

complementary oligonucleotides (Albert et al., 2007; Okou et 

al., 2007) [45, 46]. However, the oligonucleotide libraries 
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significantly increase the overall costs of this method. For 

species with limited accessible genome sequence, a different 

strategy is based on deep sequencing of libraries of reduced 

complexity built from pooled DNA samples that reflect 

populations of interest (Van Tassell et al., 2008) [47]. This 

strategy effectively develops highly reliable SNP sets for 

species with limited available genome sequence. 

 

Association analysis in PLINK 

PLINK is a publicly available and widely used software for 

genomic data manipulation and analysis (Toth et al., 2021) [48] 

and is the most comprehensive of all freely available analytic 

toolkits when it comes to quality control and analytic 

modules. It fulfills two analytic needs which are – aids in 

process of performing quality control (QC) on large data sets 

and secondly, provides basic statistical tools for analyzing the 

variants in genetic models (Slifer et al., 2018) [49]. For data 

management in PLINK, a compact binary file format is there 

to which represents SNP data. The PLINK file format consists 

of white-space (tab)-delimited, set of ped and map files. 

Within the “.ped” file, the first column corresponds to the 

population ID, the second to the individual ID. The “.map” 

file contains four columns, the first one is the chromosome 

number, second one is SNP ID, the third is the genetic 

position of the SNP, and the fourth one denotes the physical 

position (bp) within the RAD loci. For the association 

analysis to be performed in PLINK, firstly the .ped and .map 

files have to be converted into the binary format files which 

includes three files namely - fam, bam and bed files. There 

are tools as well to transform the binary format to standard 

text-based formats (Purcell et al., 2007) [50].  

Standard summary measures are available in PLINK 

including allele and genotype frequencies, genotyping rates, 

Hardy-Weinberg equilibrium tests using asymptotic and exact 

procedures as well as single-SNP Mendelian error summaries 

for family data (Purcell et al., 2007) [50]. The standard disease 

and quantitative trait association tests can be carried out for 

linear and logistic regression models allowing for multiple 

binary or continuous covariates having both the main effects 

and interactions. PLINK offers a powerful, user-friendly tool 

for performing many common analyses with whole-genome 

data (Purcell et al., 2007) [50] as well as for ddRAD data 

(Cilingir et al., 2021; Lang et al., 2020; Zhou et al., 2019) [51, 

52, 53]. 

 

Visualizing GWAS results 

Common methods for visualizing GWAS results are the two 

plots namely- “Manhattan plot” and “Q-Q plot”. A Manhattan 

plot is a plot in which –log10 (P-value) of the association 

statistic are plotted on the y-axis while the chromosomal 

positions of the SNPs on the x-axis (Turner, 2014) [54] and 

each dot on the Manhattan plot denotes a SNP. As the 

strongest associations have the smallest p-values, their 

negative logarithms will be the greatest. Hence, regions with 

many highly associated SNPs in the linkage equilibrium are 

plotted as “skyscrappers” along the plot. The different colors 

of each block usually show the extent of each chromosome. 

Q-Q (quantile-quantile) plot displays the observed association 

p-value for all SNPs on y-axis while the expected uniformly 

distributed p-values under the null hypothesis of no 

association are plotted on x-axis. Any deviation of the SNPs 

from the diagonal at upper right end of the plot signifies the 

strong association of those SNPs, while systematic deviation 

from the diagonal may indicate population stratification or 

cryptic relatedness problems in the data (Turner, 2014) [54]. A 

Q-Q plot is a probability plot, a graphical method for 

comparing two probability distributions by plotting their 

quantiles against each other. 

 

Conclusion 

Mastitis incidence can be reduced with the help of genetic 

marker-assisted selection for mastitis features because it 

produces greater uniformity and phenotypic discrimination 

than traditional selection. Genetic markers for complex traits 

like mastitis can be found through genome-wide association 

studies, which allow for the genotyping of a large number of 

putative genetic markers, such as single nucleotide 

polymorphisms (SNPs), throughout the genome. GWAS are 

now more manageable thanks to recent improvements in our 

knowledge of genomic variation and the technology that 

assess it. 
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